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ABSTRACT

Motivated by the various applications of the trapping diffusion-influenced reaction theory in physics, chemistry, and biology, this paper
deals with irreducible Cartesian tensor (ICT) technique within the scope of the generalized method of separation of variables (GMSV). We
provide a survey from the basic concepts of the theory and highlight the distinctive features of our approach in contrast to similar techniques
documented in the literature. The solution to the stationary diffusion equation under appropriate boundary conditions is represented as a
series in terms of ICT. By means of proved translational addition theorem, we straightforwardly reduce the general boundary value diffusion
problem for N spherical sinks to the corresponding resolving infinite set of linear algebraic equations with respect to the unknown tensor
coefficients. These coefficients exhibit an explicit dependence on the arbitrary three-dimensional configurations ofN sinks with different radii
and surface reactivities. Our research contains all relevant mathematical details such as terminology, definitions, and geometrical structure,
along with a step by step description of the GMSV algorithm with the ICT technique to solve the general diffusion boundary value problem
within the scope of Smoluchowski’s trapping model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0226416

I. INTRODUCTION

A. Motivation

It is presently accepted that for the most part, chemical reac-
tions in micro-heterogeneous liquid media are contact diffusion-
influenced.1–4 The latter means that the rate of these reactions is
determined significantly by the rate of encounter of reactants due
to diffusion; that is, the reaction rate is not controlled by only the
chemical requirement of overcoming an activation energy barrier.

Due to their high abundance, diffusion-influenced reactions
play a decisive role for a wide and diversified range of applications
often occurring in physics, chemistry, biology, and nanotechnol-
ogy. Examples include excitation quenching of donors by acceptors,
heterogeneous catalysis, crystal defect annealing, crystal growth,
Ostwald ripening, evaporation or burning of liquid droplets, nutri-
ent consumption by living cells, and cell metabolism to name just a
few.

To describe the microphysics of diffusion-influenced reactions
theoretically, the so-called Smoluchowski’s trapping model is often

used; this model assumes that particles diffuse in a continuum
medium containing immobile uniformly distributed absorbing
sinks. Smoluchowski’s theory is essentially a one-sink theory, which
does not account for the influence of the neighboring sinks. The
presence of neighboring absorbing sinks clearly decreases the local
concentration of diffusing particles, causing each sink to capture
fewer particles than it would if it were isolated. This, obviously,
implies that many-sink effects should be incorporated into theoret-
ical analysis. According to accepted terminology, many-sink effects
are called the diffusive interaction (for an extended discussion, see
Sec. II). The corresponding problems are well-defined; however, the
theoretical description of the diffusive interaction is often so com-
plex that solving these problems analytically, even approximately, is
very difficult, if not impossible.

Here, we will investigate a micro-heterogeneous medium in
which spherical obstacles, including absorbing sinks of different
radii, are distributed within the second distinct continuous phase.
The dispersed obstacles are assumed to be non-overlapping and
impenetrable.
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It has been shown explicitly that diffusive interaction effects
are most pronounced in the steady state.5,6 A number of different
analytical approaches proposed earlier to solve the posed diffusion
problems for the steady state were reviewed in Ref. 7. Themost com-
plete list of the commonly used analytical and numerical methods to
solve the posed problems along with some comments was given later
in Refs. 8 and 9.

Here, we consider a modification of the generalized method of
separation of variables (GMSV) that goes back to Rayleigh’s seminal
paper on the conductivity of heat and electricity in a medium com-
prising cylindrical or spherical sink systems10 (see Sec. V). Although
the GMSV by means of irreducible Cartesian tensors (ICT) seems to
be fairly convenient, at least for numerical calculations, it still did not
draw due attention of researchers. This work extends our previous
studies via the GMSV7–9,11,12 to the general case of the steady-state
diffusion-influenced processes. We focus on developing a detailed
theory of the diffusive interaction effects (see a survey in Sec. II) by
means of the ICT technique within the framework of microscopic
Smoluchowski’s trapping model. It turns out that solution in terms
of ICT elucidates rather subtle mathematical facets of the multi-
pole method and, what is more important, it significantly simplifies
the calculation of the diffusion field and the corresponding reaction
rates.

This research contains all the pertinent mathematical details,
including terminology, definitions, geometrical structure, along with
a step by step description of the GMSV algorithm with the ICT tech-
nique to solve the general diffusion boundary value problem within
the scope of Smoluchowski’s trapping model.

Therefore, the main purpose of this research is twofold. First,
we intend to pose rigorously and in full detail the boundary value
problem for the most general case of boundary conditions, describ-
ing the small particles’ diffusion and absorption in a medium
comprising both static inert obstacles and reactive sinks. Second,
providing the overall view onto the GMSV, we solve the posed prob-
lem by means of the ICT technique, keeping in mind its practical
aspects. Since reviews of the problem are lacking in the existing lit-
erature, we aim to provide a rather comprehensive overview of the
current research activities in the field. Brief literature surveys on the
relevant subjects will also be included at appropriate points in the
text.

B. Physical background

To study diffusion-influenced reactions theoretically, the so-
called trapping model is often used.13 It considers diffusion of very
small (point-like) reactants B in heterogeneous media, in which
the disperse phase behaves as a collection of immobile obstacles
immersed in an inert continuous medium commonly known as host
medium. This is justified, e.g., when obstacles diffuse much more
slowly than reactants (they are of much larger size). Provided an
arbitrary but a finite number of obstacles are regularly or randomly
distributed within a given region of the surrounding host medium,
for this system of obstacles, the terms “ensemble” or “array” are
usually used.

Standard treatments of the theory of diffusion-influenced reac-
tions generally assume that the host medium is unbounded (open
system14), quiescent, isotropic, and homogeneous; therefore, math-
ematically, it is well modeled by the 3D Euclidean space R3 (called

physical space below). In turn, reactants are assumed to be identical
non-interacting point-like Brownian particles (from now on called
B-particles or B-reactants) diffusing among 3D non-overlapping
immobile spherical obstacles embedded in some domains of the
physical space. In considering microscopic kinetics of diffusion-
influenced reactions, it is necessary to distinguish between obstacles.
Each obstacle is characterized by its geometrical and physicochemi-
cal parameters, which drastically influence the reaction kinetics. Any
particle of kind A refers to the absorbing obstacle usually called
a trap or a sink.15 For clarity, we will use the term “obstacles” to
refer exclusively to fully reflecting entities. Otherwise, we will use
the more common term “sinks.” Despite its relative simplicity, the
trapping problem is fundamental for understanding the kinetics of
diffusion-influenced reactions.2,16

In this paper, we deal with irreversible bulk contact diffusion-
influenced reactions described by the simplest reaction scheme,2

A + B
k
Ð→A ⋅ B

kin
Ð→A + Products. (1)

Here, A ⋅ B is the so-called encounter pair; k and kin stand for the
reaction rate constant and the intrinsic reaction rate constant for
the reaction of the encounter pair A ⋅ B to form inert products,
respectively.2 Clearly, the rate kin describes the surface reactivity of
sinks A,17 which we assume to be spherically symmetric.

It should be emphasized that one can assume infinite capac-
ity approximation for sinks A provided the initial concentration of
B-particles appreciably exceeds that of sinks. In other words, reac-
tions (1) are of the catalytic type,18 when the activity of the catalyst
A remains unchanged.

II. MATHEMATICAL METHODS TO STUDY DIFFUSIVE
INTERACTION

The absorbing rate coefficient of B-particles on a given sink
surface is of primary importance for the microscopic theory of
diffusion-influenced reactions (1). In his pioneering work of 1917,
Smoluchowski, on the basis of the Fick laws of diffusion, proposed a
rather simple calculation of the reaction rate coefficient k to describe
the absorption of B-particles by the surface of a given fully absorbing
spherical sink often referred to as a test sink.2,19 In passing, it should
bementioned that initially Smoluchowski’s theory was developed for
coagulation of colloids.16

Subsequently, one-sink diffusion theory was generalized in
many aspects. This section focuses on previous theoretical studies
developing the above theory to account for the diffusive interaction
between sinks.

Smoluchowski’s theory leads to the total flux of B’s into the
whole ensemble of N identical uncharged sinks as the additive
sum ΦN = NΦ1(R).20 Here, Φ1(R) is the total flux of B-particles
on the test sink of radius R. Nevertheless, over the years, it has
been realized that this theory faces challenges to understand various
reaction–diffusion phenomena in systems comprising many sinks
with small sink–sink separations. Indeed, each sink, due to chemical
reaction (1) occurring upon its surface, affects B’s concentration field
around other sinks. Simply speaking, an influence arises between the
sinks as a result of the fact that any sink “feels” the self-consistent dif-
fusion field of B-particles, determined by the entire array of sinks.
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This is caused by the law of conservation of B-particles in a host
medium.

It must be recognized that, up to now, there has been no
established terminology for the above effects. The reason is that
since these effects have wide applications in various fields, vari-
ous technical languages, including definitions and notations, were
used. The following multitude of terms is used in the literature
just to define this kind of interaction: (1) competition,21–27 (2)
diffusive (diffusional) interaction,11,12,14,28–33 (3) effect of multipar-
ticle interaction,34–36 (4) Laplace’s interaction,37 (5) concentration
effects,38 (6) collective effects,39–41 (7) reactive interference,42 (8)
shielding effects,43 (9) cooperative effects,44 and even (10) chemi-
cal interaction.40 Throughout this paper, we shall clarify some of the
relevant terms that are used in the literature.

The use of the term “collective effects” seems an unfortu-
nate one because of its frequent utilization in particle accelerator
physics. At the same time, we believe that among other terms,
the term “Laplace interaction” (or, generally speaking, “Laplacian
transport”45) best describes the essence of the interaction under con-
sideration for the steady-state diffusion, heat transfer, and Stokes
hydrodynamics.46 Nonetheless, for definiteness, we, as before, will
only use the term diffusive interaction, keeping in mind that the
obtained results may be applied to the another counterpart.32

As far as we know, Frisch and Collins pioneered in study-
ing “competition among sinks for the diffusing molecules” in the
diffusion-influenced processes, particularly the growth of aerosol
particles by condensation.21 Among early approaches, it is also
worth mentioning Ham’s theory based on the Wigner–Seitz cell
model.22 Applying a variational procedure, Reck and Prager had
first established rigorous upper and lower bounds on the rate
of diffusion-controlled reactions.47 A detailed description of this
approach with applications can be found in Ref. 17.

Later, during many years, a serious effort has been mounted
toward calculation of the microscopic reaction rates, taking into
account multisink effects. The monopole and dipole approxima-
tions for the steady state diffusion and reactions of B-particles in
dense ensembles of fully absorbing spherical sinks have been exten-
sively investigated bymany authors.2,19,23,27,30,40,48–56 However, it was
noted long ago: “. . .the interactions between sinks for the compet-
itive consumption of the solutes are not exactly accounted for in
these approximations.”57 Using the moment scattering, Bonnecaze
and Brady derived analytically the reaction rate for cubic arrays of
sinks up to the quadrupole level.58 Incidentally, they have empha-
sized there: “to accurately compute the effective reaction rate at high
volume fractions, higher order many-body multipole interactions
are required.”

Much attention has been concentrated on an important par-
ticular case of two sinks, while the above illustration relied on an
example with two spherical sinks that could alternatively be solved
analytically by using bispherical coordinates.2,25

For N > 2, the problem was solved by the methods of images
and reflections analytically.23,34 It is worth noting that the connec-
tion between the method of images and the method of reflections
was discovered in Ref. 7. An important point is that within the
framework of the classical method of images, the corresponding
compensating solutions are based on point charge potentials inside
sinks and, thereby, allow us to obviate the need for the use of
addition theorems for solid harmonics.7

Concerning theoretical methods to attack the multi-particle
diffusion problem, Ratke and Voorhees (Ref. 59) noted: “we shall
develop a solution to the diffusion problem that is consistent with
the particles having a spherical morphology. This can be done in
a self-consistent manner using multiple scattering theory,51 using
irreducible Cartesian tensor,60 or using boundary integrals and mul-
tipole expansions.”61 In this context, we note that the multiple scat-
tering theory51 based on the microscopic monopole approximation
and multipole expansions method was applied in spherical coordi-
nates.61 In its turn, the irreducible Cartesian tensor approach60 is
nothing more but a scalar version of the well-known induced force
method.

Later on, the influence of many neighboring sinks on diffusion-
controlled reactions was theoretically investigated in Ref. 26. A
particular focus has been given there to the fact that “. . .in most
analytical works, only two-sphere cases were mainly considered in
the calculations of physical quantities such as rate constant. This is
because of difficulty in solving differential equations with more than
three spheres (or with many local boundary conditions).” On this
basis, authors, “to avoid the mathematical difficulty encountered in
analytical approach,” have solved the corresponding boundary value
problem for the 3D diffusion equation by means of the finite ele-
ment method.26 However, it turns out that the diffusive interaction
is harder to describe by this method especially in the case of fully
reflecting obstacles.

We emphasize that interest to the study of the diffusive inter-
action was revived past decades due to problems on crowded
systems and active transport.42,62 More recently, there has been
a growing interest in theoretical and experimental investigations
on the diffusive interaction effects of neighboring droplets during
their evaporation on a surface (substrate). Particularly in recent
experiments, there was evidence that “. . .neglecting the diffusive
interactions can lead to severe inaccuracies in the measurement of
droplet concentration. . .”33 This circumstance has significant prac-
tical implications, bearing in mind the fact that “droplet evaporation
on surfaces is ubiquitous in nature and plays a key role in a wide
range of industrial and scientific applications. . .”33 Note in passing
that quasi-steady-state diffusion to an assembly of slowly growing
truncated sphere on a substrate may also be treated with the help of
spherical multipoles.63

For years the complexity of the problem under considera-
tion caused well reasoned pessimism among many researchers. For
example, in Ref. 140, we read: “When there are more than two static
sinks in an isotropic medium, it seems nearly impossible to obtain
exact analytical expressions. . .”

Early studies on the diffusive interaction were comprehensively
reviewed in Ref. 64, whereas the current status of research on this
subject can be found in the recent survey.32

Thus, an accurate theoretical description of the problems
involving diffusive interaction in multi-particle ensembles of spher-
ical obstacles and sinks is a long-standing challenge due to their
many-body nature.

III. STATEMENT OF THE GENERAL PROBLEM

As we pointed out above, the diffusive interaction is the most
manifested in the steady state regime. Accordingly, when studying
the diffusive interaction, this circumstance allows us to simplify
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significantly the mathematical problem, ignoring the time-
dependent effects.

A rigorous formulation of the problems on the microscopic
theory of diffusion-influenced reactions comprises the following: (a)
specifying the geometry of the configuration manifold, (b) taking
into account the reactants’ properties and the hostmedium involved,
(c) using an adequate diffusion system of the continuity equations
and constitutive relation, and (d) prescribing appropriate boundary
conditions. It is important to note from the outset that by solution to
the diffusion–reaction problem, wemean solely its classical solution.

Our mathematical statement of the problem is similar to that
given in Ref. 26 (attention is drawn to the fact that sinks and
diffusing particles are denoted there as B and A, respectively).

The diffusive interaction substantially depends on a given con-
figuration of reactive and inert boundaries,32 so first of all, we specify
the geometrical part of the problem.

A. Domains’ definition

As is customary, let ∂Ω denote the closed boundary of a 3D
domainΩ ⊂ R

3 such that its closure isΩ = Ω ∪ ∂Ω.
Consider a collection of arbitrary but finitely many N ≥ 1

microscopic spherical sinks of different radii Ri, immersed within
an unbounded host fluid medium R

3. Geometrically, we treat the
ith sink as a 3D body occupying a spherical domain (open ball)
Ωi ⊂ R

3. Denote by Ωi the corresponding closed bounded spherical
domain, assuming that all Ωi are non-intersecting or non-touching,
i.e., Ωi ∩Ω j = ∅ for i(≠ j) = 1,N. So, the total domain occupied by

an array of N sinks is Ω+ ∶= ⋃ N
i=1Ωi. Clearly, this domain has mul-

tiply connected boundary ∂Ω
+
= ⋃N

i=1 ∂Ωi, where the correspond-
ing boundary ∂Ωi (ith sink reaction surface2) is the ith connected
component of the total boundary ∂Ω+.

Meanwhile, it is apparent that the diffusion problem should be
posed on the whole 3D physical spaceR3 excluding the total domain
occupied by sinks, i.e., in the sink-free region.17 Hence, the required
domain outside all sinks is the exterior domain with respect to sinks:
Ω
−
∶= R

3/Ω+ ⊂ R3 and the whole physical spaceR3 can be naturally
partitioned into two complementary subdomainsΩ+ andΩ

−.
Plainly, Ω− is the set of accessible configurations for B’s, so

we term this domain as a configuration manifold. It is evident
that diffusive interaction is highly affected by the geometry of the
configuration manifoldΩ

−.

Example III.1. For instance, consider two sinks labeled i and
j with radii Ri and Rj, as depicted in Fig. 1. Here, we placed a
particle B into an arbitrary point P of the configuration manifold
Ω
−
∶= R

3/(Ωi ∪Ω j).
Let r ∶=

Ð→
OP be a vector that represents the position of the cur-

rent point P in Ω
− with respect to some fixed point O. Introduce

a global Cartesian coordinate system, taking point O as the origin:{O; r}, and attach the standard orthonormal Cartesian basis {eα}3α=1
to this origin. The related components of the position vector r are
denoted by rα (α = 1, 2, 3) or in ordered triple form by (r1, r2, r3).

Using the global coordinates, we designate by ri0 the position

of the center of the ith sink and by Li j ∶=
ÐÐ→
OjOi = r

i
0 − r

j
0 the separa-

tion vector between the two sink centers, pointing from the jth sink
toward the ith sink (see Fig. 1).

FIG. 1. Definition sketch for the two-sink array. The configuration manifold
Ω
−
⊂ R3 corresponds to the given microstructure X (2) with a B particle located

at point P ∈ Ω−. Cartesian coordinate systems: global {O; r} (green); local in ith
sink {Oi ; ri} and in jth sink {Oj ; rj} (blue); and sink radii Ri and Rj (red).

Clearly, any ith sink spherical domain is Ωi = {r ∈ R3

: ∥r − ri0∥ < Ri} with the boundary ∂Ωi = {r ∈ R3 : ∥r − ri0∥ = Ri},
where ∥ ⋅ ∥ stands for the common Euclidean norm.

We shall consider diffusion of B’s in the configurationmanifold
Ω
− formed by an arbitrary but a finite ensemble of N spherical sinks

with fixed radii {Ri}Ni=1 centered at positions {ri0}Ni=1 immersed in the
3D hostmedium.Hence, the geometry of this manifold is completely
determined by theN-sink configuration17 or brieflymicrostructure,65

X
(N)
∶= {(ri0,Ri)}Ni=1. (2)

Introduce open complements of the sink domains Ωi in the
physical space R

3, which play an important role in our study:
Ω
−

i = R
3/Ωi. It is clear that for all arrays (N ≥ 1), we have

Ω
−
= ⋂N

i=1Ω
−

i ⊆ Ω
−

i .
Consider the position vector ri(ri1, ri2, ri3) of point P ∈ Ω−i .

These three real numbers are called local coordinates of point P in
Ω
−

i . The corresponding local Cartesian coordinate system for any
ith sink can be conveniently defined by {Oi; r

i
1, r

i
2, r

i
3} ≡ {Oi; ri}with

the same orientation as the global one and the origin Oi(ri0) at the
center of the ith sink (see Fig. 1). So, for any fixed i, we can choose
standard local orthonormal Cartesian basis {eiα}3α=1 attached to the
origin Oi(ri0) such that riα are coordinates in this basis. The intro-
duced local coordinates are useful for computation of the diffusion
field in arrays with microstructure (2).

Let us take the above position vector r for the point P and
consider it with respect to two local Cartesian coordinate systems{Oi; ri} and {Oj; rj}. The corresponding point P position vectors
are

ri = r − r
i
0 and rj = r − r

j
0. (3)

The transition between these local coordinates is given by the
following rule (see Fig. 1):

rj = ri + Lij. (4)

In this work, we also use the corresponding unit vector L̂i j ∶= Li j/Li j ,
where Lij is the distance between centers Li j = ∥Li j∥ = ∥ri0 − r j0∥
= ∥ri − r j∥.

Remark III.1. Note that simple linear connection between local
coordinates (4) arose due to the use of Cartesian coordinates. Really,
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the application of polar spherical coordinate systems leads to the
corresponding nonlinear dependence.

An additional point to emphasize is that theoretical calcu-
lations often used the distance between the surfaces of domains
Ωi and Ωj, i.e., hi j ∶= Li j − (Ri + R j) (see Fig. 1). Hence, the con-
dition describing the configurations of N sinks, which are not
intersecting or touching may be written explicitly as

hij > 0 for all i(≠ j) = 1,N. (5)

Finally, note that in Refs. 7 and 66, we have shown that the
3D smooth manifold is a relevant mathematical concept to describe
diffusion-influenced reactions in domains with multiply connected
boundaries.

B. Governing equation

To describe the steady state microscopic diffusion–reaction
model and introduce a local concentration (number density) of

B-reactants, n : Ω− → R+ depends on a given microstructure X(N)

(2) and also different reactivities of sinks. Moreover, to describe
reactions, it is convenient to introduce the set of sink reactivities

k
(N)
in ∶= {kiin}Ni=1, where the rate kiin corresponds to the ith sink reac-

tivity. Thus, in a fixed global Cartesian coordinate system {O; r},
extending notations of Refs. 17 and 19, one can write this function

as n(P;X(N), k(N)in ), which for short we denote just by nN(P). Often,
function nN(P) is scaled with its bulk concentration of B’s cB so that
nN(P)(r)/cB treated.2,26

However, we are going to use another function, namely com-
plementary normalized local concentration, which seems to be more
appropriate to subsequently diffusive interaction effects,

uN : Ω
−

→ (0, 1), where uN(P) = 1 − nN(P)
cB

. (6)

For brevity, we will still call this function local concentration, if there
is no confusion to be appeared.

Assuming that the rescaled Fick’s local diffusion flux constitu-
tive relation holds,2

j = D∇uN(P) in Ω
−

, (7)

where D is the translation diffusion coefficient. The local concen-
tration uN(P) is governed by the B-particle conservation law, which
leads to the Laplace equation as follows:

∇
2
uN(P) = 0 in Ω

−

. (8)

Hereinafter, as usual, ∇ ∶= ∑3
α=1 eα∂α and ∇

2 stand for the gradient
operator and the Laplacian on R

3, respectively. For brevity, hence-
forth, we use the notation ∂Ϛ for the partial derivative ∂/∂Ϛ with
respect to the independent variable Ϛ.

To describe the diffusion–reaction phenomena, Eq. (8) should
be subjected to the appropriate boundary conditions on the sink
surfaces ∂Ωi and condition at infinity.

C. Boundary conditions

The present work is concerned with the whole possible range
of the intrinsic rate constants 0 ≤ kiin < +∞, and in general case,

we can impose the local form of inhomogeneous Robin boundary
conditions,

[4πR2
iD n̂i ⋅∇uN − k

i
in(1 − uN)]∣

∂Ωi
= 0, i = 1,N, (9)

where n̂i is the outer-pointing unit normal vector with respect to the
ith sink boundary ∂Ωi.

For applications, it is expedient to distinguish two important
particular cases of the general boundary conditions (9).

(i) In the case when kiin → 0 conditions (9) give homogeneous
Neumann boundary conditions,

4πR2
iD n̂i ⋅∇uN ∣∂Ωi

= 0. (10)

(ii) Provided kiin → +∞, conditions (9) are reduced to inhomoge-
neous Dirichlet boundary conditions,

uN ∣∂Ωi
= 1. (11)

For uniqueness of a solution to Laplace’s equation (8) under
conditions (9), one should require satisfying the regularity con-
ditions at infinity: uN(P) = O(∥r∥−1) and ∇uN(P) = O(∥r∥−2) as∥r∥→∞.67,68 These conditions are equivalent to the following
regularity condition at infinity:

uN(P)∣∥r∥→∞ ⇉ 0, (12)

and it uniquely determines the function uN(P), which is harmonic in
the infinite domainΩ

−.67 Hereafter, the sign⇉ denotes the uniform
limit. Note in passing that in the physical literature, condition (12)
is commonly referred to as the outer boundary condition.26,69

Thus, the exterior inhomogeneous Robin boundary value
problems (8), (9), and (12) are entirely formulated.

D. Physical meaning of the boundary conditions

Specific values of kiin should be known experimentally or
by means of more detailed kinetic theory, e.g., based on the
Fokker–Planck–Klein–Kramers equation.2 Provided magnitudes of
kiin are positive and finite, we deal with diffusion-influenced reactions
on the so-called partially reflecting (absorbing) sinks.70,71 In the case
of very large values of kiin (i.e., as kiin → +∞), the sinks are called
fully (perfectly) absorbing , and the corresponding reactions, occur-
ring on them, are known as fully diffusion-controlled .2 Physically,
that means that the activation barrier appeared to be very small.72

Particular attention should be given to the case of fully reflecting
obstacles (when kiin = 0), which becomes also important for dense
arrays of sinks and obstacles. Formally speaking, we can treat a fully
reflecting obstacle as a sink with the zero intrinsic rate.

Of special interest in many applications is the case when sinks

possess different surface reactivities for amicrostructureX(N). To put
it another way, intrinsic rate constants kiin∣∂Ωi

= const are different

for at least some numbers from a given set {1 < i ≤ N}. Gener-
ally, arrays consisting of three kinds of chemically distinct sinks
can occur: partially reflecting, fully absorbing, and fully reflecting.
Provided different boundary conditions are posed on different con-
nected components of the total boundary, they are termed improper
mixed boundary conditions.73 At first glance, it would seem that this
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case is described by boundary conditions (9) automatically. How-
ever, solution of the boundary value problems (8), (9), and (12) may
face subtle mathematical difficulties.68

In concluding this subsection, we note that crowding and
geometrical constraint effects on diffusion-influenced reactions42

may be treated if one considers microstructures X(N) containing
1 ≤ N0 ≤ N inert obstacles. The presence of fully reflecting obstacles
might strongly influence the reaction rate when the number of these
obstacles is large enough.26,42

IV. THE DIMENSIONLESS FORMULATION
OF THE PROBLEM

Before subsequent mathematical study, it is expedient to reduce
the original boundary value problem to a non-dimensional form.
In its turn, for spatial dimensionless independent variables, we shall
utilize the corresponding local Cartesian coordinates (Oi; ri) at the
ith sink of radius Ri as a characteristic unit,

ξi = ri/Ri, ξ
i
0 = r

i
0/Ri ξiν = r

i
ν/Ri, ξi = ∥ξi∥. (13)

Besides these dimensionless local coordinates for any pair of sinks
i and j(≠ i), the following important parameters74

εji = Ri/Lij < 1, εij = Rj/Lij < 1 (14)

are naturally arisen. Clearly, parameters (14) are totally determined

by a given microstructure X(N) (2), and in general case, they obey
the condition εij ≠ εji. Moreover, the unit sphere centered at a point

ξ
i
0 we henceforth designate by

∂Ω
1
i ≡ ∂Ωi(ξi0; 1) ∶= {ξi ∈ Ω−i : ξi = 1}. (15)

Here, it should be especially noted that the performed nor-
malization (13) holds only locally in Ω

−

i and does not hold in the
whole manifold Ω

−. Note also that in the interest of readability for
all domains Ω−i , transformed according to Eq. (13), we retain the
same designations.

It is expedient now to write the diffusion problem immediately
in the local coordinates {Oi; ξi}. However, sometimes to empha-
size the fact that we deal with the field on a manifold coordinateless
form, uN(P) will be used. Clearly, the basic equation governing the
exterior steady-state equation (8) under partially reflecting boundary
conditions (9) and regularity condition at infinity (12) with respect
to the local concentration uN(ξi) (i = 1,N) and dimensionless
variables (13) reads

∇
2
ξi
uN(ξi) = 0 in Ω

−

i , (16)

− ∂ξiuN(ξi)∣∂Ω1
i
= κi[1 − uN(ξi)∣∂Ω1

i
] > 0, (17)

uN(ξi)∣ξi→∞ ⇉ 0. (18)

Hereafter,∇2
ξi
stands for the corresponding dimensionless Laplacian

written in local coordinates {Oi; ξi}.
In addition, we introduce the corresponding dimensionless set

of sink reactivities: κ(N) ∶= {κi}Ni=1 with κi = kiin/kiS ∈ ∥0,+∞), where

kiS = 4πRiD is the Smoluchowski rate constant for the fully absorbing
ith sink.

Thus, from a mathematical viewpoint, we deal with the exte-
rior Robin boundary value problem given by Eqs. (16)–(18) in an
unbounded 3D manifold Ω

− with N-connected boundary ∂Ω−. An
additional point to emphasize is that the boundary conditions (17),
being posed on all connected components ∂Ωi of the boundary
∂Ω
−, are integral, which reflects the important fact that the diffusive

interaction between sinks is not pairwise additive.

A. The microscopic trapping rate

For the theory of diffusion-influenced reactions, the most
important value is the microscopic trapping rate for the ith sink
defined as ki ∶= Φi/cB, where Φi stands for ,the total flux of B’s on
the ith sink surface. In turn. with the help of known solution nN(P),
the total microscopic trapping rate on the reaction surface ∂Ωi can
be calculated straightforwardly,

ki = ∮
∂Ωi

n̂i ⋅ j∣∂Ωi
dSi, (19)

where dSi is the ith surface element. Then, recasting (19) with respect
to uN(ξi) in an exterior neighborhood of the ith sink surface, one
can easily obtain the desired microscopic trapping rate (19) by the
surface integral over the unit sphere,

ki(X(N); κ(N)) = −∮
∂Ω1

i

∂ξiuN ∣∂Ω1
i
dξ̂i. (20)

Hence, for dense enough sink arrays when diffusive interaction
effects become important, it is necessary to determine the appro-
priate correction factors to the absorption rates on all N sinks.
Therefore the above rate (20) is sought in the following form:

ki(X(N); κ(N)) = kiSJi0(κi)Ji(X(N); κ(N)), (21)

where the ith dimensionless Collins–Kimball rate given by2

J
i
0(κi) = κi/(1 + κi) for i = 1,N (22)

generalizes one-sink expression. Below, to simplify notations, we
omitted the corresponding parameters. Evidently, Ji0 is unperturbed
by the diffusive interaction Collins–Kimball trapping rate for the ith
sink normalized by kiS.

In representation (21), the magnitudes Ji are commonly called
the screening coefficients75 (rate correction factors34). It is absolutely

clear that due to dependence on configuration of sinks X(N) and

their reactivities κ(N), the screening coefficient Ji (usually, for sim-
plicity, we shall omit arguments in the function notation) expresses
the effect of the diffusive interaction between a given ith sink and
other N − 1 sinks. It emerges from the physical standpoint that the
diffusive interaction reduces the reaction rate of either sink com-
pared with that of a single one. Hence, the stronger the diffusive
interaction, the smaller the Ji is, and the following relations hold
true:

0 < Ji < 1, lim
εij→0

Ji = 1 for all i(≠ j) = 1,N. (23)

Limit (23) simply means that the diffusive interaction disappears at
large separations between sinks.
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It is significant that, generally speaking, the microscopic trap-
ping rate (20) for N ≥ 2 does not coincide with the reaction rate
constant k defined by Eq. (1), which is a macroscopic value.76

So, investigating diffusive interaction effects in systems with N ≥ 2
sinks, we cannot use the term “rate constant” for ki given by Eq. (20)
any more.12

V. METHOD OF SOLUTION

The present section is devoted to an overall description of the
generalized method of separation of variables, which is a powerful
tool for the solution of the Robin boundary value diffusion problem
given by Eqs. (16)–(18).

However, before starting to discuss this topic, we briefly high-
light the application of the boundary integral equation method.9,77

One can reduce the above diffusion problem given by Eqs. (16)–(18)
to solution of a system of Fredholm boundary integral equations of
the II kind. It turned out that this system of integral equations may
be reduced to the corresponding infinite system of linear algebraic
equations.78 However, this method for the diffusion problem given
by Eqs. (16)–(18) involves a number of disadvantages compared to
the approach at issue, and, therefore, it would not be considered
here.

A. Generalized method of separation of variables

The generalized method of separation of variables (GMSV)7–9,32

naturally stems from the standard method of separation of vari-
ables and its incipience goes back to the classic studies by Maxwell79

and Basset.80 However, most clearly, this idea was expressed in
Rayleigh’s seminal paper on the conductivity of heat and electricity
in a medium with cylindrical or spherical sinks arranged in a rectan-
gular array.10 At present, this approach is referred to as the Rayleigh
multipole method.

Since then, the GMSV had been intensively developed and
found numerous applications in electrostatics, hydrodynamics,
mechanics, heat transfer, diffraction theory, and many other fields.
Surprisingly, these advances typically remained “hidden” within
each discipline and unknown to the researchers, worked in other
fields. Such a parallel development led to multiple “rediscoveries”
of the same results in different fields. Wherein, various names were
given to the GMSV by different authors. It is also widely known as
the “generalized Fourier method.”81,82 Guz’ and Golovchan treated
the method as essentially a particular case of the “method of
series.”83 Finally, in micromechanics of heterogeneous materials,
mainly the term “multipole expansion approach” is used.84

Note that all the above-mentioned names capture only some
features of the method under consideration. As this method relies
on the separation of variables in local curvilinear coordinates, fol-
lowing Ivanov, it can be called “generalized method of separation of
variables.”85

Among the numerous studies devoted to the development of
GMSV, Ivanov’s book holds a special place.85 For the first time,
Ivanov presented the scheme of the GMSV in full detail and, more-
over, he derived a number of new and reviewed known then addition
theorems for the sets of basis solutions to the Helmholtz equa-
tion, written in different curvilinear coordinate systems.85 Although
Ivanov used the method to solve various problems concerning

diffraction theory for two particles, it is clear that the same approach
is also valid for a finite number of particles.

The basic idea of the GMSV consists in reducing the origi-
nal boundary value problem posed in the configuration manifold
Ω
− to the corresponding N boundary value problems in domains

Ω
−

i . These N problems are coupled through the boundary condi-
tions, prescribed on the whole disconnected boundary ∂Ω

−. Thus,
the GMSV is actually the method of separation of variables on the
3D manifold.7,66

B. Outline of approach

The application of the GMSV to the boundary value problem
given by Eqs. (16)–(18) may be formulated as the GMSV algorithm,
which in turn can be divided up into the following main steps:

1. Proof of the well-posedness of the solution to the posed
boundary value problem;

2. Decomposition of the desired solution in the form of the
sum of partial solutions by means of the general linear
superposition principle;

3. Determination of the appropriate basis solutions to the dif-
fusion boundary value problem posed in the given canonical
domains with disconnected boundary;

4. Determination of relevant addition theorems to obtain local
regular expansions of partial solutions in a neighborhood of
corresponding connected components of boundary;

5. Application of the addition theorems in order to satisfy the
boundary conditions;

6. Reduction of the problem to a resolving self-consistent infinite
system of linear algebraic equations;

7. Solution of the resolving infinite system of linear algebraic
equations; and

8. Calculation of the microscopic reaction rate.

One can see that the linearity of the boundary value problem is
one of the primary requirements for the GMSV algorithm. Further-
more, contrary to the standard method of separation of variables,
the GMSV algorithm requires two supplementary rather non-trivial
mathematical tools: the appropriate addition theorems for the basis
solutions along with methods to solve the resolving infinite system
of linear algebraic equations.

We have to emphasize that here a particular case of the GMSV
for the sinks of the same form (spherical) will be utilized. So, we
shall not apply the re-expansion theorems connecting different basis
functions corresponding to the different shapes of sinks.

VI. THE GMSV WITH IRREDUCIBLE CARTESIAN
TENSORS

Previously, by means of GMSV for 3D domains with N discon-
nected spherical boundaries, we presented the detailed derivation
of the Laplacian Green functions for both the exterior and interior
Dirichlet and Robin problems along with the Green function for the
relevant conjugate (transmission) boundary value problem.9 Some
facets of the GMSV applications to the theory of stationary bulk
diffusion-influenced reactions on spherical sinks were also studied
and discussed in Refs. 9, 32, and 86. However, it is important that
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all analytical and numerical calculations were performed there using
the local spherical coordinate systems.

Plainly, the general solution algorithm is feasible in two ways:
by means of either solid spherical harmonics with respect to a polar
spherical coordinate system or, alternatively, with the help of the
ICT (for details, see the Appendix). The wide use of solid harmon-
ics in the theory of diffusion-influenced reactions is a matter of
common knowledge (see, e.g., Refs. 24 and 87–90 and references
cited there). In the meantime, studies devoted to similar applica-
tions of ICT are only very few.7,11,12,60,71,91 This seems surprisingly,
taking into account the facts that the ICT formalism has a number
important advantages against standard solid harmonics approach
(see Sec. IX). In this connection, it is particularly remarkable that
recent decades investigations have inspired a renewed interest for
use of the ICT technique to study a number of problems in systems
with N-sphere microstructure (2).92–102

Against these recent trends, the lack of new studies concerning
the applications of the ICT in diffusion-influenced reaction theory is
especially noticeable.

To our knowledge, Lebenhaft and Kapral were the first who
successfully applied the ICT technique to the diffusion problem
given by Eqs. (16)–(18).71 Subsequently, an explicit form of the
GMSV with the aid of ICT was carried out in our paper (Ref. 11),
where we utilized this form of the GMSV to solve problems on Ost-
wald ripening, taking into account multipole corrections. It should
be stressed that our approach stems from the method of Cartesian
ansatz suggested in 1978 by Schmitz and Felderhof.103 Although
Ref. 103 studied a hydrodynamic problem, the authors also treated
the Robin boundary value problem for Laplace’s equation in the
unbounded domain exterior to a sphere. In that regard, it is perti-
nent to cite here the above paper: “we solve this problem by making
an ansatz in Cartesian coordinates, rather than following the usual
method of introducing spherical coordinates.”

Note in passing that the so-called self-consistent field method
is another version of the above method of Cartesian ansatz.95 A
method of reflections with the help of ICT used in Ref. 104 to solve
the problem of the spherical particle motion due to a temperature
gradient is also worth mentioning here. It is important to mention
that some approaches used just different modifications of the GMSV
in terms of the above-treated version with the help of the ICT.56,105

In Ref. 60, a scalar version of the well-known induced force
method has been applied to the theory of diffusion-controlled reac-
tions for the first time. It turns out, however, that both the induced
force method and the GMSV by means of the ICT lead to the
same second kind ISLAE with respect to unknown tensor constants
involved.7,78

VII. THE ADDITION THEOREM IN TERMS
OF IRREDUCIBLE CARTESIAN TENSORS

Due to the fact that the Laplace equation (16) remains invariant
under the action of the group of Euclideanmotions,106 irregular solid
harmonics (see definitions in the Appendix) written in local coordi-
nates of any domain Ω

−

i (Ω−j ) can be recast in terms of regular solid

harmonics written in local coordinates of another domainΩ
−

j (Ω−i ).
One of the key points of the GMSV algorithm is the trans-

formation of the solid harmonics under the action of subgroup of
translations.32,107 Provided domains Ω−i and Ω

−

j possess the same

form (complements of spheres in the present paper), the appropriate
transformation formulas of that kind it is expedient to call irregular
to regular translation addition theorems (I→ R TAT).

The goal of this section is to present a proof of the I → R TAT
within the scope of the GMSV in terms of ICT. We note in passing
that, strictly speaking, we deal here with scalar translation addition
theorems only.

Before starting presenting the main material of this section,
it only remains to recall the basic terminology and notations
concerning the Cartesian tensors given on R

3.
A real tensor field of nth order defined on R

3 we denote by
Tn(r) in coordinate-free notation. The same tensor field can also
be described by its components with respect to a fixed orthonor-
mal basis {eα}3α=1 given in coordinates {O; r}, i.e., Tn(eγ1 , . . . , eγn)
= Tγ1...γn(r). Here and in the following, Tγ1...γn(r) are 3n compo-
nents of the n-rank generic Cartesian tensor field Tn(r). It is clear
that the action of the nabla operator with ∂rμ ∶= ∇μ to a field, which
is a tensor of rank l, yields a tensor of rank l + 1. We recall in pass-
ing that one should not distinguish between co- and contravariant
indices due to the duality of Cartesian basis.108

The product symbol ⊙q represents a full tensorial contraction of
multiplicity q or shortly the q-fold contraction between two tensors
with the convention S0 ⊙ T0 ∶= T0. In particular, for tensors Sn and
Tm and q ≤ n,m, we have a tensor

Sn⊙
q
Tm ∶=∑

γ1

. . .∑
γq

Sγ1...γn⊙
q
Tμ1...μm

of rank n +m − 2q, whereas it is a scalar if n = m = q.

A. The degenerate translation addition theorem

First, let us focus our treatment on a particular case of the
I → R TAT, which plays a key role in the subsequent proof of the
general TAT.

Assume that r > ∥ri0∥, where r = ∥r∥ is the distance between the
global origin O and a current point P (see Fig. 1).

Thereby, we can write the known Taylor’s expansion as follows:

1

∥ri∥ =
1

∥r − ri0∥ = exp (−r
i
0 ⋅∇)1

r
, (24)

where the so-called translation operator is represented by107

exp (−ri0 ⋅∇) ∶= ∞∑
k=0

(−1)k
k!
(ri0 ⋅∇)k.

Clearly, series (24) converges absolutely and uniformly for all
r > 0.67

Function 1/r is often termed the generating function. Tradition-
ally, Eq. (24) is referred to as the multipole expansion of the (global)
fundamental solution of the Laplacian at the pole point ri0 in powers
of r−1 (see, e.g., Ref. 67).

For the further consideration, it is convenient to recast expan-
sion (24) in terms of ICT defined by Eq. (A1).97 This fact allows us to
formulate the so-called degenerate translation addition theorem for
solid harmonics
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Theorem VII.1. For all r > 0, the fundamental solution of the
Laplacian by means of the ICT may be expanded in an absolutely and
uniformly convergent series,

(25)

where ωk ∶= (2k − 1)!!/k!, and rγν and r0iγm are the Cartesian coordi-

nates of vectors r and ri0, respectively.

This form of multipole expansion is very broadly utilized across
various scalar fields of physical and chemical sciences. Moreover,
(25) plays a key role in the derivation of the translation addition
theorem and that is why it is also called the degenerate addition
theorem.

B. The translation addition theorem

It has been known that I→ R TAT holds true for solid harmon-
ics ψ±nm(r) defined in polar spherical coordinates (see, e.g., Ref. 9
and references therein). Here, we present a derivation of the similar
I→ R TAT in terms of ICT X

±

n (see the Appendix), which was given
in Refs. 11 and 12 without a proof.

For our problem, the connection between local coordinates (4)
plays a key role, so let us start with an important general.

Definition VII.1. Any two given local curvilinear coordinate sys-
tems {Oi; ζ i} and {Oj; ζ j} are said to be consistent if there exists a
translation with vector a such that ζj = ζ i + a.

This definition immediately brings to the following assertion.
Any two local Cartesian coordinate systems {Oi; ri} and {Oj; rj} are
consistent if and only if: (a) they are positively oriented and (b) all
their axes are pairwise parallel with respect to the global Cartesian
coordinates. One can see that local Cartesian coordinates {Oi; ri}
and {Oj; rj} depicted in Fig. 1 are consistent. Note in passing that
some authors prefer to use the term “parallel coordinate systems”
rather than “consistent coordinate systems.”107

Definition VII.2. A translation addition theorem for a given
smooth function u : Ω− → R+ is a formula expressing its value u(r
+ a) in terms of values u(r) and u(a), where r, r + a ∈ Ω−, and also
their derivatives.

Definition VII.3. The translation addition theorem I → R yields
an explicit formula for converting an irregular ICT X

−

n given in one
origin Oj into a local expansion with respect to the corresponding
regular ICT X

+

n about a shifted origin Oi.

The meaning of the addition theorems is to derive the
corresponding addition formulas.

Now, we can state and prove our main result in this section.

Theorem VII.2. The irregular to regular translation addition
theorem for the irreducible Cartesian tensors holds true,

(26)

where the mixed-basis matrix106 elements read

wherein series (26) converges uniformly and absolutely if inequalities
(14) hold true.

Proof. Rewriting Eq. (4) in the relevant local Cartesian coordi-
nates of jth and ith spheres, we have

r
j
γν = r

i
γν + L

i j
γν , (27)

where L
i j
γν are the coordinates of vector Lij (γν = 1, 3). Linear depen-

dence (27) leads to the evident relations ∂
r
j
γν
= ∂riγν

. Using them in

Eq. (A1), one readily obtains

or, taking into account that ∂riγν
= −∂

L
i j
γν
, one has the relation

(28)

Theorem VII.1 yields

(29)

Substituting this expansion into Eq. (28) and taking into consider-
ation the uniform convergence of the series (29), we arrive at the
required translation addition theorem (26). ◻

For further investigation of the problem given by
Eqs. (16)–(18), it is expedient to recast expression (26) in a
dimensionless form as follows:

(30)

where dimensionless mixed-basis matrix elements are

Ũ
i j
γ1...γnμ1...μk ∶= σknε

n+1
i j εkjiΛγ1...γnμ1...μk(L̂ij).

In particular, the dimensionless form of the degenerate translation
addition theorem (25) reads

(31)

The above presented proof of I→ R TAT in terms of ICT seems
to be the simplest among previously known theorems for solid har-
monics in terms of polar spherical coordinates.109,110 It is important
to stress that using connection between spherical solid harmonics
and ICT (see the Appendix), the proved addition theorem (26) can
be reduced to that for the spherical solid harmonics written in a
spherical coordinate system.

Finally, note that to solve diffusion problems under proper
mixed boundary conditions,73 when intrinsic rates are functions
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on the angular local coordinates κi(θi,ϕi), we need the rotational
addition theorem for the ICT. The latter theorem may be proved in
entirely similar way.

VIII. SOLUTION TO THE PROBLEM

Here, we implement the GMSV algorithm described in Sec. V
using the ICT technique. Moreover, we shall develop here the
version of the GMSV elaborated previously in Refs. 11, 12, and 91.

A. The GMSV algorithm implementation

For clarity sake, we organize our treatment according to the
method outline distinguishing eight steps inherent in the GMSV.

Step 1. The mixed boundary value problem given by Eqs. (16)–(18)
is well posed and has a unique classical solution.67,68,111

Step 2. First, we can apply the superposition principle. Decom-
pose the general solution uN(P) of the above diffusion problem
given by Eqs. (16)–(18) with respect to the ith sink, consider-
ing the set of partial solutions to Eq. (16), which are defined

as {ui(ξi)}Ni=1 (ui : Ω−i → (0 , 1∥). Thus, in the local Cartesian
coordinates {Oi; ξi}, we can write

uN(ξi) = ui(ξi) +
N

∑
j(≠i)=1

uj(ξj) in Ω
−

i . (32)

Here, by virtue of Eqs. (4) and (14), one has evident relations:
εi jξ j = ε jiξi + L̂i j (see Fig. 1). From the physical standpoint,
representation (32) means that to find the desired reaction rate
on the ith sink, we need to know only the local behavior of the
field uN(P) in a vicinity of this sink.
Clearly, by definition, functions ui(ξi) are harmonic in
domainsΩ−i , i.e.,

∇
2
ξi
ui(ξi) = 0, (33)

ui(ξi)∣ξi→∞ ⇉ 0. (34)

Therefore, the original diffusion boundary value problem given
by Eqs. (16)–(18) in the manifold Ω

− (intersection of all
domains Ω−i ) is reduced to N coupled problems for ui(ξi) in
simpler domainsΩ−i , with the advantages of the local Cartesian
coordinates {Oi; ξi}.
Alternatively, for inhomogeneous partially reflecting boundary
conditions (17) in an exterior ε-neighborhood of the bound-
ary ∂Ωi: Ω

−

i (ε) ∶= {ξi : 1 < ξi < 1 + ε} ⊂ Ω−i , it is convenient to
recast solution uN(ξi) as

uN(ξi) = ui(0)(ξi) + δui(ξi) in Ω
−

i (ε), (35)

where ui(0)(ξi) is the unperturbed one-sink solution and

δui(ξi) is a perturbation due to the influence of each from other
N − 1 sinks for j(≠ i) = 1,N. Owing to Eq. (17), we assume
that these solutions obey inhomogeneous and homogeneous
partially reflecting boundary conditions, respectively,

− (∂ξiui(0) − κiui(0))∣∂Ω1
i

= κi, (36)

(∂ξiδui − κiδui)∣∂Ω1
i
= 0. (37)

Therewith, the unperturbed by diffusive interaction solution

u
i
(0)(ξi) = Ji0ξi−1 (38)

obeys inhomogeneous boundary condition (36). Here, Ji0 is the
ith Collins–Kimball rate (22).
One important point to emphasize is that Eqs. (32) and (35) are,
respectively, the global and local representations of the same
function defined on the manifold: uN : Ω− → (0, 1∥.

Step 3. It can be shown that tensor fields introduced by Eqs. (A6)
and (A7) are families of irregular {X−n (ξi)}∞n=0 and regu-
lar {X+n (ξi)}∞n=0 solid Cartesian harmonics, which form the
desired basis functions (complete and orthogonal sets) in
domainsΩ−i andΩ+i , respectively. Thus, we can represent a par-
tial solution ui(ξi) with the help of the irregular ICT, satisfying
the regularity condition at infinity,

(39)

Meanwhile, in an exterior neighborhood of ith sink boundary
∂Ωi, we can represent the perturbation function in Eq. (32) as
a series with respect to the regular ICT,

(40)

In Eqs. (39) and (40) Ai
γ1...γn and Bi

γ1...γn are tensor coefficients
to be determined from the boundary conditions (17).

Step 4. Theorem VII.2 in the dimensionless form (30) gives the
required translation addition theorem to tackle the diffusion
problem given by Eqs. (16)–(18).

Step 5. Now, by means of the dimensionless translation addition
theorem (30), we satisfy the Robin boundary conditions (17).
Hence, taking advantage of the ICT linear independence, we
can express the coefficients Ai

γ1...γn in terms of Bi
γ1...γn ,

A
i
0 = J

i
0(1 − Bi

0) for n = 0, (41)

A
i
γ1...γn =

n − κi
1 + n + κi

B
i
γ1...γn for n ∈ N. (42)

With the aid of these connections, formula (35) for the per-
turbed diffusion field in an exterior neighborhood of the surface
∂Ωi (i = 1,N) yields

(43)

One can easily verify that this solution obeys homogeneous
partially reflecting boundary condition (37).
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In addition, using Eq. (39) under relationships (41) and (42) for
domainΩ

−

j , we immediately write down an auxiliary relation,

(44)

It is worth noting that all terms here satisfy the regularity
condition at infinity (18) as opposed to the local expression
(43).

Step 6. Now in the local Cartesian coordinates {Oi; ξi}, one can
carry out a self-consistent procedure to find unknown tensor
coefficients Bi

γ1...γk appearing in formulas (43) and (44). First,
we apply the dimensionless translation addition theorem (30)
including its degenerate form (31) to the right-hand side of
Eq. (44) in order to recast it in the local coordinates {Oi; ξi}.
Then, with allowance made for expression (40) and orthogo-
nality property of the ICT on the unit spheres ∂Ω1

i (A5), we
derive the required self-consistent infinite system of linear alge-
braic equations (ISLAE) of the II kind with respect to unknown
tensor coefficients Bi

γ1...γk . We should note that these infinite

systems are commonly referred to as the resolving ISLAE.84,112

According to the statement of the diffusion problem given in
Sec. III, we should distinguish three particular cases of the
resolving ISLAE.

(a) For partially reflecting sinks (when 0 < κi < +∞), the
resolving ISLAE is

B
i
γ1...γk = B

i(0)
γ1...γk +

N

∑
j(≠i)=1

∞

∑
l=0

( k − κj
1 + k + κj

)
× Ũ

i j
γ1...γkμ1...μl⊙

l
B

j
μ1...μl , k = 0,∞. (45)

Hereinafter, for short, we denoted

B
i(0)
γ1...γk =

N

∑
j(≠i)=1

J
j
0 Ũ

i j
γ1...γk. (46)

Another two important ISLAE are special cases of (45).

(b) In case of fully absorbing sinks (when κi → +∞), the
resolving ISLAE is simplified to

B
i
γ1...γk = B

i(0)
γ1...γk −

N

∑
j(≠i)=1

∞

∑
l=0

Ũ
i j
γ1...γkμ1...μl⊙

l
B

j
μ1...μl , (47)

where k = 0,∞.

(c) For fully reflecting (when κi → 0), the resolving ISLAE
(45) obviously yields

B
i
γ1...γk = ( k

1 + k
) N

∑
j(≠i)=1

∞

∑
l=0

Ũ
i j
γ1...γkμ1...μl⊙

l
B

j
μ1...μl , (48)

where k = 1,∞.

Step 7. Consider here the most general case of arrays with par-
tially reflecting sinks. In other words, to find Bi

γ1...γk , sys-
tem (45) requires the inversion of the corresponding infinite-
dimensional matrix.32,86 So, we deal with a typical problem that
may be solved by the methods of functional analysis.113,114 For
instance, provided the ISLAE (45) is of normal Poincare–Koch
type, it implies that the Fredholm–Hilbert alternative holds
true.113 Hence, a unique solution of (45) exists and it may be
found by the method of reduction to any degree of accuracy.112

The latter means that the resolving ISLAE (45) should be trun-
cated and then inverted obtained finite system numerically to
get approximations of the coefficients Bi

γ1...γk . Under some con-
ditions, the resolving ISLAE (45) possesses solution, which may
be obtained bymeans of simple iterations.86 Obviously, the zero
and the first iterations for Bi

0 are

B
i(0)
0 =

N

∑
j(≠i)=1

J
j
0 Ũ

i j
0 , (49)

B
i(1)
0 = B

i(0)
0 −

N

∑
j(≠i)=1

J
j
0 Ũ

i j
0 B

j(0)
0

−

N

∑
j(≠i)=1

∞

∑
l=1

J
j
0 Ũ

i j
μ1...μl⊙

l
B

j(0)
μ1...μl. (50)

Here and below, Ũ
i j
0 is the monopole approximation to the

mixed-basis matrix. Interestingly, in the course of solving the
ISLAE (45) by simple iterations, angular dependence arises
starting from terms 𝒪(ε4).
We suggest the readers who are interested in questions con-
cerning the convergence of the GMSV procedure to address
Ref. 66 and references therein.

Step 8.Once the local concentration uN(P) is found, one can deduce
the total flux of diffusing particles B onto the ith sink. At that,
one should utilize the local representation (35) of function
uN(P). Due to the orthogonality condition for the ICT (A5),
explicit surface integration on the unit sphere in the general
formula (20) will yield the desired rates (21).

B. Main results obtained by using the ICT technique

Within this subsection, we present our main results, which are
conveniently to formulate in a form of two theorems.

Thus, for an arbitrary sinks microstructure X(N) and reactivities

set κ(N), we have proved the following assertions:
(a) On global representation of the solution uN(P).
Theorem VIII.1. Using the local Cartesian coordinates{Oj; ξj} ( j = 1,N), the solution uN(P) (P ∈ Ω−, see Fig. 1) to the

exterior Robin boundary value problem given by Eqs. (16)–(18) may
be represented as follows:

(51)
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where tensor coefficients Bi
γ1...γk (k = 0,∞) are solution of the

resolving ISLAE (45).

(b) On local representation of the solution uN(P).
Theorem VIII.2. Solution uN(ξi) to the exterior Robin bound-

ary value problem given by Eqs. (16)–(18) in a small exterior
ε-neighborhood of the unit sphere ∂Ω

1
i with respect to the local

Cartesian coordinates {Oi; ξi} reads

(52)

where tensor coefficients Bi
γ1...γk (k = 0,∞) are solution of the

resolving ISLAE (45).

So, if we know the solution uN(ξi) in an exterior neighbor-
hood adjacent to the ith reaction surface (52), we can calculate the
B-particles flux on the ith sink and, therefore, the corresponding
absorbing rate and, in this way, screening coefficient (21). Thus,
taking advantage of Theorem VIII.2, one can readily prove the
following important corollary.

Corollary 1. For the exterior Robin boundary value problem
given by Eqs. (16)–(18), the screening coefficient in Eq. (21) has the
following form:

Ji = 1 − B
i
0 and 0 ≤ B

i
0 < 1, (53)

where coefficients Bi
0 are determined by means of solution to the

resolving ISLAE (45).

It is worth noting here that in Ref. 115, Krasovitov thoroughly
reproduced the notation, derivations, and even misprints of our
paper.11 However, he has been the first who kept all terms com-
prising Bi

γ1...γn (n ∈ N) in the series with respect to the orthogonal
system of ICT after integration over the unit sphere (20) (see a
detailed discussion of these points in Ref. 91).

C. General remarks on the obtained solution

In Sec. II, we already stated that exact solution to the dif-
fusion boundary value problem given by Eqs. (16)–(18) is pos-
sible only for two fully absorbing sinks by means of bispherical
coordinates.25,28,29,116 Using the bispherical coordinates for the prob-
lem under partially reflecting boundary conditions (17) leads to
rather cumbersome recurrence relations and therefore does not pro-
vide any advantages compared to other methods. On the contrary,
for our approach, the kind of boundary conditions does not mat-
ter. Moreover, the calculation of the diffusion field uN(P) from the
boundary value problem given by Eqs. (16)–(18) in general case of
N sinks microstructure (2), when N > 2 is a far too complicated task
to be solved analytically in closed form.

A comparison of the general resolving ISLAE (45) with that
(47) for fully absorbing sinks shows the weakening of the diffusive
interaction effects in arrays comprising the partially reflecting sinks.
Clearly, the diffusive interaction vanishes for the fully reflecting
obstacles.

An N-sink calculation reveals that the pure diffusion field of
B-particle around any ith sink ui(0)(ξi) (38) is influenced by a con-
tribution mediated by all other N − 1 sinks (52), leading, in turn, to
the screening effects similar to that in electrostatics.23

We emphasize that discussed in Sec. III mixed diffusion bound-
ary value problems with three kinds of obstacles may be treated
straightforwardly by the GMSV in terms of ICT.

The GMSV in terms of ICT may also be applied to catalytically
activated diffusion-influenced trapping reactions occurring in host
media comprising arrays of both finitely many sinks and immobile
catalytic domains.18

Finally, it is worth noting that the stationary diffusion equation
under the so-called conjugate boundary conditions9,112,117 may also
be tackled with the above-mentioned method quite similarly.

IX. DISCUSSION

This section contains discussion of some distinctive charac-
teristics of the method under consideration and some important
conclusions of its application for the description of the diffusive
interaction between sinks.

First, point out that regardless of its technical implementation,
the GMSV belongs to the class of methods, when the correspond-
ing approximate solution satisfies the diffusion equation (16) and
regularity at infinity (18), while the boundary conditions (17) are
obeyed only approximately. This fact is of primary concern to theo-
retical modeling of the diffusion-influenced reactions in an arbitrary
ensemble of N sinks. Here, it is worth noting that, for example, per-
forming solution of the exterior elliptic boundary value problems in
unbounded domains by grid methods, one faces serious difficulties
concerning condition at infinity.

A. Advantages of the ICT technique

We have solved the problem on the diffusive interaction
between spherical sinks by means of local Cartesian coordinate sys-
tems, rather than by introducing polar spherical coordinates. As it
might be appeared at first sight, Cartesian coordinates serve well
to solve diffusion problems for rectangular geometries, and not
for the problems containing spherical domains. However, it turns
out that the above assertion generally is not a case. In connec-
tion with this, it is significant that Hinsen and Felderhof claimed
the following: “. . .the spherical harmonics have disadvantages in
numerical calculations” and below they continued: “in both ana-
lytical and numerical calculations the Cartesian moments are often
more convenient.”118

It appears that applying of irreducible Cartesian tensor tech-
nique leads to rather fast convergence of the local concentration
expansion (52). In addition, this approach, contrary to standard one
based on the irregular solid spherical harmonics ψ−n (ri, θi,ϕi),9,32,86
allows us to perform all numerical calculations for the real-valued
functions only. Note that real-valued solid harmonics have a number
of advantages over often used complex-valued ones. The choice of
irregular irreducible Cartesian tensorsX−n (ri) (A6) as a basis of func-
tions for solutions of the exterior steady-state diffusion problems in
the configuration manifold Ω

− implies a very rapid convergence of
the numerical solution, as confirmed here with several examples.
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In addition, contrary to the spherical solid harmonics, there
are relatively simple recursion formulas to calculate analytically the
irreducible Cartesian tensors. They are based on rather easy suc-
cessive differentiation of generating function in Eq. (A1). Interested
readers are encouraged to refer to studies, where explicit recurrent
expressions for the ICT are comprehensively presented.97,108,118–124

Note also that from the analytical point of view, obtained in
Sec. VIII, solution uN(P) keeps an explicit analytical dependence on
P. In turn, from the numerical standpoint, this property allows one
to truncate the resolving ISLAE at lower sizes as compared to other
numerical methods such as the finite element method.26

Moreover, from a pure mathematical viewpoint, the spherical
coordinate system has one more serious drawback. It is easy to show
that in spherical coordinates {Oi; ri, θi,ϕi} axis Oix

i
3 and half-plane

{ri1 ≥ 0, ri2 = 0} should be excluded to satisfy one-to-one property in
Ω
−

i .
A number of other advantages of the ICT technique are

described also elsewhere.97,108,125

B. Description of the diffusive interaction

Let us dwell now on several particularly important points on
the diffusive interaction that directly follows from our results.

If an array comprises only fully reflecting obstacles, we have no
diffusive interaction between them. Meanwhile, in situation when a
given array contains at least one absorbing sink, the diffusive inter-
action exists and we should also take into account influence of inert
obstacles.

It is very important to note that here the ICT technique was
applied to the diffusion problems under consideration posed in the
unbounded domains, whereas the same approach is also applicable
to the similar interior boundary value problems describing reac-
tions occurring inside a spherical region (see Refs. 9, 32, and 86 for
details). So, the GMSV in terms of ICT can be very useful not only
in the theory of diffusion-influenced reactions, but also in biology,
when reactions can take place into bounded domains.62 We note,
incidentally, that Smoluchowski’s rate constant cannot describe even
one-sink reaction inside a larger spherical domain since it does not
consider diffusive interaction effect due to the boundary of englobed
domain.

It is interesting to note that clustering of sinks was found to
reduce the absorbing rate even more significantly compared with
nonclustered systems.20 The method gives us possibility to tackle
trapping reactions in several clusters of obstacles and sinks in the
same way as for separated sinks.

Taking into account obtained here and our previous
results,12,126 we can conclude that diffusive interaction “glues” fully
absorbing sinks effectively onto a fully absorbing effective sink.
Therefore, the whole N-sink array behaves like a single, isolated
fully absorbing sink of some characteristic size.

For a number of applied tasks, one should use the derived
microscopic solution (51) [or (52)] along with microscopic trap-
ping rates (53) calculating appropriate configurationally aver-
aged values to obtain effective macroscopic values associated with
heterogeneous media comprising different types of sinks.17,19,127,128

Let us dwell on one more possible application of the approach
at issue. In Ref. 112, we have established for the first time that even
classical passive phoresis of microparticles (i.e., motion due to a

constant gradient of some scalar field) should be treated by means
of their interaction with so-called surrounding bodies, which are
responsible for the external gradient. In this context, it is worth to
note that the first and only attempt to apply a similar approach for
studying particle interactions for thermophoresis was undertaken by
Keh and Chen in Ref. 104. They used so-called polyadic tensors, but
in fact, these tensors are the same as the ICT up to a constant factor.
Again, the GMSV in terms of ICT can be used to investigate these
quite challenging problems.

Nevertheless, it should be stressed that the ICT technique works
for the case of contact reactions only. It cannot be applied to solve
the relevant diffusion–reaction problems for the distance dependent
reactions between reactants, which are governed by the following
equation:

−∇
2
nN = −l(r)nN , (54)

where l(r) stands for a noncontact reaction rate.2,16 An exception is
a particular case when in Eq. (54) l(r) ≡ l0 = const.
X. CONCLUSIONS AND PERSPECTIVES

Motivated through new applications in physics, chemistry, and
biology, this paper deals with the generalized method of separation
of variables by means of the irreducible Cartesian tensor formalism
extending our previous study on the diffusion-controlled reactions
to the general case of diffusion-influenced reactions. We have devel-
oped here a complete modification of the above-mentioned method,
which essentially hinges on a number of useful properties of the
irreducible Cartesian tensors. Formally, we reduced the steady-state
diffusion problem to a set of N Laplace equations with respect to
partial solution together with the prescribedN boundary conditions.

In order to determine the place and significance of our research,
we have presented a rather comprehensive review of literature
devoted to the theoretical methods for diffusion-influenced reac-
tions on spherical sinks. In addition, we paid close attention to the
mathematical aspects of the appropriate diffusion problem, namely:
(a) rigorous statement of the problem, including terminology clari-
fication, and (b) refining solution algorithm. The formulation of the
geometric part of the diffusion boundary value problems was per-
formed the most fully than anywhere else. We have given a proof
of the irregular to regular translation addition theorem in terms
of irreducible Cartesian tensors, which seems to be the simplest
among previously known theorem for solid harmonics in terms
of polar spherical coordinates. For the first time, the correspond-
ing solution algorithm was divided into eight clear steps. Then, we
implemented this algorithm step by step in full detail to solve the
posed diffusion problem. It turns out that the method of reduction
may be used to solve numerically the resolving system to any degree
of accuracy even when the simple-iteration method is inapplicable,
wherein the desired accuracy of the solution can be achieved just by
increasing the truncation degree. Furthermore, note that themethod
has advantages such as shorter calculation time and more accurate
results compared to purely numerical methods.

Our results fully confirm the known Hinsen–Felderhof state-
ment that it is more preferred to work with harmonic func-
tions using their irreducible Cartesian tensor form throughout
diffusion–reaction problems even for ensembles of spherical sinks.
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This research provides also a better understanding of the reac-
tant diffusion among arrays comprising collection of arbitrary but
many fully absorbing, reflecting, and partially reflecting sinks from
both mathematical and physical viewpoints.

The approach developed here is applicable to a wide class of
reaction–diffusion systems, providing useful tests for numerical cal-
culations along with approximate analytical estimates of the local
concentration field and reaction rates in many specific cases of
practical importance.

Finally, it is important to highlight that numerical methods can
handle diffusion problems for complex geometries in unbounded
domains, yet they require introducing an artificial boundary, reduc-
ing the original exterior domain to a bounded domain. The general-
ized method of separation of variables does not have this drawback
and provides simple direct numerical and analytical calculations.
So, we can obtain approximations as the truncated point multipole
expansions up to the monopole, dipole, quadrupole, etc., order.

It is essential to note that self-phoresis of the Janus particles
moving due to a chemical reaction in the surrounding fluid is inves-
tigated by means of monopole approximation.40 Using the approach
considered here, this important problemmay be under attack taking
into account multipole corrections.112
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APPENDIX: BACKGROUND ON THE IRREDUCIBLE
CARTESIAN TENSORS

To make this paper maximally self-contained and facili-
tate applications in diffusion-influenced reactions theory, we pro-
vide here necessary mathematical notations, definitions, and facts,
required in rigorous formulation and applications of the ICT
technique.

The standard notations such as N, Z, R, and R+ representing
the sets of natural, integer, real, and strictly positive real numbers,
respectively, will be used in the sequel. For the three-dimensional
(3D) Euclidean space, we use common R

3.

1. Definitions and examples

It is well-known that there exist two alternative approaches to
harmonic functions theory based on either Laplace’s representation
of solid harmonics with respect to the polar spherical coordinates or
Maxwell’s theory of poles given in terms of the successive deriva-
tives of fundamental solution written for a Cartesian coordinate

system.111,129 The latter approach may be formulated with the aid
of the irreducible Cartesian tensors.

Generally speaking, the irreducible tensors transform accord-
ing to the irreducible representation of the special rotation group
SO(3). In other words, the irreducible tensors like spherical har-
monics form a basis in the representation space of group SO(3).
To our knowledge, the ICT simple mathematical description suit-
able for applied physicists has been provided in Ref. 125. Moreover,
for many years, there has been a significant number of publications
devoting to the use of the ICT formalism in a wide variety of applica-
tions (see, e.g., Refs. 120, 130–133 and references therein). As regards
adopted notations and definitions, in this paper, we basically follow
known books by Hess97 and Snider,108 where comprehensive dis-
cussions on the various facets of irreducible Cartesian tensors are
presented.

Any tensor, which cannot be reduced to a tensor of lower rank
is known as an irreducible tensor.97 While a generic (reducible) nth
order Cartesian tensor Tn has 3n components, the corresponding
irreducible tensor besides the rank n is likewise characterized by its
weight j.125 It is common knowledge that the latter tensor has 2j + 1
independent components, which form the basis of the j weight irre-
ducible representation of the full 3D special rotation group SO(3)
including mirror.108

Furthermore, among all ICT obtained from a given n rank
tensor by means of reductions, there exists one unique irreducible
tensor with the same weight and rank n = j. It is known in the lit-
erature as ICT in natural form.125 We deal with irreducible tensors
in natural form because they best suited to apply within the scope of
the GMSV.

Thus, for n rank Cartesian tensors, our focus lies on their irre-

ducible parts in natural form at that we use notations and ,

where symbol stands for the irreducible part of a Cartesian
tensor Tn of rank n ≥ 2 with respect to the special rotation group
SO(3).97,108

The irreducible tensor in natural form is appeared to be fully
symmetric and traceless; therefore, this allows us to use rather simple
definition of the irreducible Cartesian tensors.98,134

Definition X.1. A Cartesian tensor of rank n ≥ 2 is called irre-
ducible Cartesian tensor, if it is (i) totally symmetric under an
arbitrary permutation of the indices and (ii) traceless under the
contraction of any pair of indices.

An important point is that according to definition (X.1), the
ICT can be expressed in terms of successive partial derivatives of the
generating function 1/r for all points in R

3/{0}.
Proposition X.1. An irreducible Cartesian tensors of rank n

(when n ≥ 2) may be defined as97,111

(A1)

Here, rγν are Cartesian coordinates of a vector r (γν = 1, 3) and(2n − 1)!! ∶= 1 ⋅ 3 ⋅ . . . ⋅ (2n − 1) indicates the double factorial for odd
natural numbers with the convention (−1)!! ∶= 1.

Proof. Check that the tensors introduced by Eq. (A1) are
symmetric for any pair of indexes and traceless.
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(i) Indeed, Eq. (A1) involves directly that the introduced tensor
is symmetric with respect to permutation of its indexes,

(A2)

(ii) Moreover, due to harmonicity of the generating function,

∇
2(1

r
) = δαβ⊙2

∂rα∂rβ(1r ) = 0 for r > 0, (A3)

tensors (A1) are also traceless with respect to any pair of their
indexes,

(A4)

where δαβ is the Kronecker delta. Thus, Eq. (A1) satisfies both
points of definition (X.1).

◻

Remark X.1. Note furthermore that traces cannot be defined for
any scalars a0 ∈ R [tensors of rank 0) or vectors (r1, r2, r3) (tensors of
rank 1)]. Nevertheless, they are harmonic and, therefore, irreducible
by definition.97

Hence, in the explicit form, the first several irreducible Carte-
sian tensors of ranks n corresponding to the monopole (n = 0),
dipole (n = 1), quadrupole (n = 2), and octupole (n = 3) potentials
read as follows:

B. Orthogonality condition

Denote by d2 r̂ the magnitude of the surface element on
the unit sphere in global coordinates: ∂Ω1 ≡ ∂Ω(0; 1) ∶= {r ∈ R3 :
r̂ = 1}. Then, for all n ≥ 0, we can write the following orthogonality
condition:97

(A5)

where in case of sphere, n̂ = r̂ (in component notation
r̂α = rα/r) is a unit vector identifying a point on ∂Ω1 and

is the restriction of the ICT to the
unit sphere ∂Ω1. In Eq. (A5), Δ

(n)
γ1...γn ,μ1...μk stands for the 2n rank

projector, which projects any tensor of rank n into its irreducible
part. In particular, three first projectors are97

Δ
(0)
= 1, Δ

(1)
= δαβ,

Δ
(2)

αβ,α′β′
=
1

2
(δαα′δββ′ + δαβ′δβα′) − 1

3
δαβδα′β′.

3. Connection with solid harmonics

In applications are also used themultipole potentials defined by
X
∓

n (r) = X∓γ1...γn(r),97 where the components read

X
−

γ1...γn(r) ∶= (−1)n∂rγ1 . . . ∂rγn (1r ), (A6)

(A7)

Owing to definition, they are connected by the following relation:

X
+

n (r) = r(2n+1)X−n (r). (A8)

For reasons explained below (see X C), it is quite natural to call
potentials X

−

n and X
+

n irregular and regular ICT, respectively.118

However, throughout this paper, we use ICT defined by Eq. (A1),
since they are most extensively employed in applications.

As indicated in Sec. I, solid harmonics were thoroughly
used previously to investigate many-sink effects during diffusion-
influenced reactions. So, it is expedient to point to an intimate
relationship between them and the ICT.97,135–137

Recall that real solid harmonics ψnm(r, θ,ϕ), where the inte-
ger m such that −n ≤ m ≤ n and n = 0,∞, are harmonic functions
in spherical coordinates {O; r, θ,ϕ}.67 For brevity, we shall denote
them as ψn(r, θ,ϕ). Furthermore, according to their behavior at the
origin O, two kinds of solid harmonics are distinguished:

(1) irregular at O solid harmonics ψ−n (r, θ,ϕ) has a pole of order
n + 1 singularity at O;

(2) regular at O solid harmonics ψ+n (r, θ,ϕ) has real-valued
harmonic homogeneous polynomials of order n.

Hence, irregular solid harmonics ψ−n automatically satisfies the
regularity condition at infinity (18) and, therefore, they are regular
at infinity.

Clearly, irregular X−n (A6) and regular X+n (A7) ICT correspond
to irregular and regular solid harmonics ψ−n and ψ+n .

Represent tensors X±n (r) in the form that most closely resem-
ble classical irregular ψ−n (r, θ,ϕ), regular ψ+n (r, θ,ϕ), solid and real
spherical Yn(θ,ϕ) harmonics,

X
−

γ1...γn(r) = r−(n+1)Yγ1...γn(r̂), (A9)

X
+

γ1...γn(r) = rnYγ1...γn(r̂), (A10)

(A11)

It is apparent that the ICT Yγ1...γn(r̂) like spherical harmonics
depend on the direction of vector r only.97

As noted above, the ICT similar to solid harmonics form a basis
in the representation space of the group SO(3); therefore, there exist
a non-singular linear transformation and its inverse in space R2n+1,
which map these bases into each other.111 Using known Sylvester’s
theorem,111,137 one can find the desired connection between tensors
X
±

n and classical real solid harmonics ψ±n explicitly. We emphasize
here that original Sylvester’s proof is rather sophisticated;111 there-
fore, interested readers are encouraged to refer to a simple proof of
Sylvester’s theorem proposed by Backus in Ref. 138.
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Thus, it can be shown that Sylvester’s theorem implies

1

rn+1
Yn(θ,ϕ) = n

∑
m=0

m

∑
l=0

clm∂
l
r1∂

m−l
r2 ∂

n−m
r3 (1r ), (A12)

where

Yn(θ,ϕ) = n

∑
m=0

Y
m
n (θ,ϕ),

Y
m
n (θ,ϕ) ∶= (amn cos mϕ + bmn sin mϕ)Pm

n (cos θ) (A13)

is the real spherical harmonic of degree n and orderm. In Eq. (A13),
amn , b

m
n , and clm are some known real coefficients and Pm

n (cos θ) are
associated Legendre functions.139

In particular, for the axially symmetric case (m = 0), taking all
derivatives along the Or3 axis, we have rγ1 = rγ2 = . . . = rγn = r3 and
formula (A12) boils down to the following well-known relation:111

1

rn+1
Pn(cos θ) = (−1)n

n!
∂
n
r3(1r ). (A14)
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