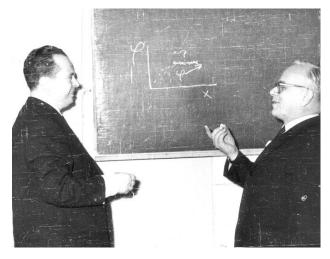

ИНЭПХФ им. В.Л. Тальрозе ФИЦ ХФ РАН: от лаборатории элементарных процессов ИХФ АН СССР до Института энергетических проблем химической физики РАН

История Института энергетических проблем химической физики Российской академии наук (ИНЭПХФ РАН) неразрывно связана с именем его организатора и первого директора лауреата Ленинской премии СССР в области науки и техники (1984 г.), лауреата медали им. Томсона Международного массобщества (2003 спектрометрического г.), членакорреспондента AΗ СССР, профессора Львовича Тальрозе (15.04.1922 – 22.06.2004).


Виктор Львович – яркий представитель Школы академиков Н.Н. Семенова и В.Н. Кондратьева, в свою очередь, воспитал целую плеяду замечательных ученых, которые представляли цвет советской науки и образовали Школу В.Л. Тальрозе.

1941 - 1945 годы: будучи студентом Химического факультета МГУ им. М.В. Ломоносова в 1941-м году Виктор Львович Тальрозе ушел добровольцем на фронт Великой Отечественной Войны, а после окончания ВОВ продолжил обучение в МГУ.

1947 год: закончивший Химфак МГУ в Виктор Львович Тальрозе был зачислен на должность младшего научного сотрудника в Лабораторию элементарных процессов под руководством академика Виктора Николаевича Кондратьева, что в дальнейшем и определило круг его интересов и привело к созданию ИНЭПХФ РАН.

1958 год: ведущие сотрудники Лаборатории элементарных процессов ИХФ АН СССР д.х.н. В.В. Воеводский и к.ф.-м.н. В.Л. Тальрозе составляют докладную записку с анализом научной и практической важности решения проблем, связанных с конденсированными свободными радикалами. Этот документ лег в основу проекта, обосновывающего необходимость проведения работ по свободным радикалам, в том числе с использованием ускорителей электронов. 7 декабря 1958 года вышло Постановление Совета Министров СССР об организации при ИХФ Центральной научно-исследовательской лаборатории свободных радикалов (ЦНИЛСР), которую возглавил В.Л. Тальрозе, а 27 декабря появилось распоряжение Президиума АН СССР по организации строительства лабораторного корпуса в пос. Черноголовка для работ по новой тематике.

В.Л. Тальрозе и Н.Я. Бубен. Обсуждение результатов эксперимента

На месте будущего корпуса ОСР на полигоне в пос. Черноголовка

1959 год: образован Отдел свободных радикалов (ОСР), заведующим которого стал к.ф.-м.н. В.Л. Тальрозе. Позже этот отдел был преобразован в Сектор физических методов стимулирования химических реакций (ФМСХР).

Разработка уникальных отечественных приборов (*справа налево: В.Л. Тальрозе, Г.Д. Танцырев, В.Д. Гришин*)

В.Л.Тальрозе (слева), рабочий момент

1981 год. Сотрудники руководимой В.Л. Тальрозе лаборатории Ионно-радикальных процессов (ИРП).

1984 год: за цикл работ «Фундаментальные исследования химических лазеров на цепных реакциях» (1963—1978) члену-корреспонденту АН СССР Виктору Львовичу Тальрозе с группой сотрудников присуждена Ленинская премия;

1986 год: за цикл работ «Магнитно-спиновые эффекты в химических реакциях» (1973—1984) присуждена Ленинская премия профессору Евгению Леонидовичу Франкевичу, заведующему лабораторией «Экситонных процессов»;

Филиал ФМСХР в Черноголовке.
А.Н.Пономарев (стоит второй слева).
В.Л.Тальрозе (сидит второй слева).

Слева направо: Е.Б. Гордон, В.Л. Тальрозе, Е.Л. Франкевич с супругой.

1987 год: на базе лабораторий сектора ФМСХР создан Институт энергетических проблем химической физики АН СССР. Директором Института становится член-корреспондент АН СССР В.Л. Тальрозе.

В.Л. Тальрозе

Отдел свободных радикалов в 70-е годы прошлого столетия

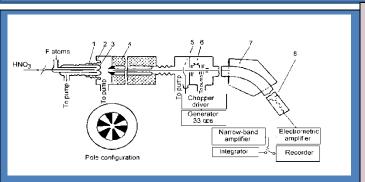
2003 год: В.Л. Тальрозе присуждена медаль Дж. Дж. Томсона Международного массспектрометрического общества за выдающийся вклад в развитие масс-спектрометрии;

2012 год: Институту энергетических проблем химической физики РАН присвоено имя члена-корреспондента РАН В.Л. Тальрозе;

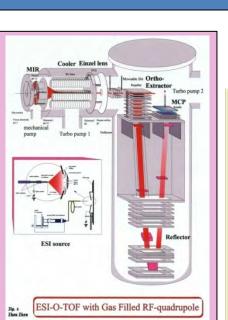
2019 год: Институт энергетических проблем химической физики им. В.Л. Тальрозе РАН вошел в состав Федерального исследовательского центра химической физики им. Н.Н. Семенова.

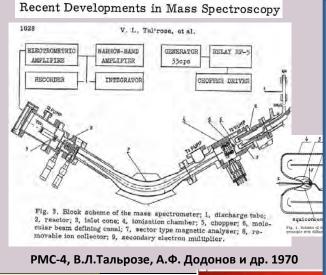
Усилия В.Л. Тальрозе по развитию новых перспективных тематик привели к созданию научной школы, внесшей выдающийся вклад в отечественную и мировую масс-спектрометрию. В частности, под его руководством, а также сотрудниками руководимого им ИНЭПХФ РАН были получены основополагающие результаты мирового уровня, в частности:

- открытие иона метония (CH₅⁺), приведшее к созданию метода химической ионизации;
- получение экспериментального доказательства отсутствия энергии активации в ионно-молекулярных реакциях
- создание масс-спектрометрического метода определения сродства к протону
- создание концепции и практическая реализация радикального масс-спектрометра, отмеченного Золотой медалью Всемирной выставки аналитического приборостроения в Брюсселе в 1958 году;
- первый в СССР хромато-масс-спектрометр (Хромасс)
- времяпролетный масс-спектрометр с ортогональным вводом ионов, ставшим стандартом в мировой практике масс-спектрометрического приборостроения;
- создание масс-спектрометра ультравысокого разрешения для ионов малых масс, первая в мире демонстрация разделения дублета 3He/T и точное измерение разности масс в нем (проблема массы покоя нейтрино).
- -первая демонстрация возможности определения хиральности методами массспектрометрии

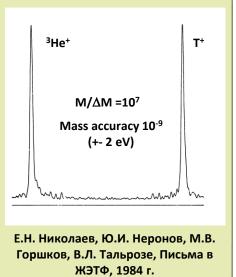

Среди достижений школы В.Л.Тальрозе в смежных областях химической физики необходимо также отметить:

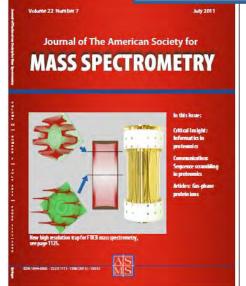
- разработка методов получения свободных радикалов, методов их идентификации в конденсированном и газообразном состоянии, методов измерения плотности и т.д.;
- создание уникального радиационно-химического центра в Черноголовке;
- разработка первого химического лазера на фтор-водородной смеси;
- создание нового научного направления в химической физике химической кинетики химии высоких энергий;
- работы в области плазмохимии химии низкотемпературной неравновесной плазмы;
- исследования в области примесь-гелиевых конденсатов;
- исследования в области преодоления «озонового кризиса», включая теоретическое и экспериментальное изучение механизмов гибели озона в атмосфере;
- участие в работах по созданию многоразовой воздушно-космической системы (ВКС) «Буран», в подготовке и проведении первого запуска «Бурана».


ИНЭПХФ РАН им. В.Л. Тальрозе сегодня

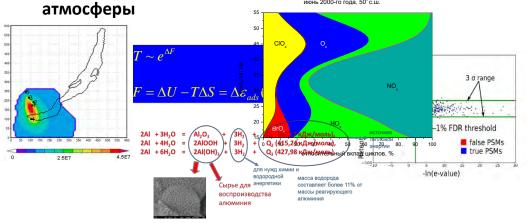

Масс-спектрометрия в ИНЭПХФ

РМС-3, И.И. Морозов, И.О. Лейпунский, М.Н. Ларичев

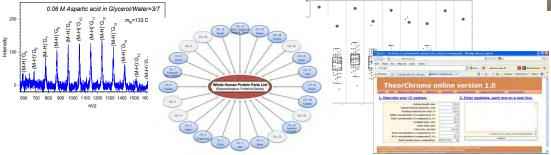



ОртоВМС, А.Ф. Додонов и др. 1987

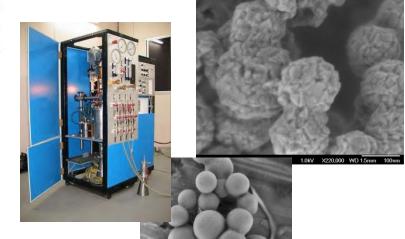
Лауреаты медали Томпсона Международного масс- спектрометрического общества, 2003 г.



Сотрудниками ИНЭПХФ были созданы основы современной масс-спектрометрии высокого и ультравысокого разрешения


Перспективные направления развития тематики исследований в ИНЭПХФ РАН

• Высокопроизводительная масс-спектрометрия высокого и сверхвысокого разрешения и аппаратура на ее основе для исследований в области биохимии и персонализированной медицины


• Химическая физика гомогенных и гетерогенных процессов, включая поиск источников возобновляемой электроэнергии и энергоаккумулирующих систем, а также анализ источников антропогенного и биогенного влияния на состояние

• Высокопроизводительные методы обработки экспериментальных данных физико-химического анализа сложных смесей высокомолекулярных соединений, включая «big data» в области нанотехнологий и биомедицины

• Технологии получения ультрадисперсных материалов для разработки новых конструкционных материалов и биологических сред

Тематика исследований и работ ИНЭПХФ РАН на период 2018-2022 г.г.

ИНЭПХФ им. В.Л. Тальрозе ФИЦ ХФ РАН

Комплексные темы исследований

Фундаментальные основы химической физики гомогенных и гетерогенных процессов

Постгеномные технологии на основе хромато-масс-спектрометрии Фундаментальные химико-физические исследования в энергетике, экологии, материаловедении и смежных дисциплинах

Конкретные темы научных исследований и разработок

Химическая физика атмосферы, процессов горения, нано- и биотехнологии

Развитие аппаратуры и методик синтеза и применения ультрадисперсных порошков в качестве компонента конструкционных, высокоэнергетических и других композиционных материалах, а также биологически активных сред

Комплексные исследования процессов с участием заряженных частиц в газовой фазе, определяющих свойства и состав среды при воздействии источников ионизации, газового разряда, плазмохимических процессов и ионизирующей радиации на атмосферу

Методы обработки результатов биохимического анализа и разработка информационно-аналитических ресурсов на их основе

Картирование профиля химических модификаций высокомолекулярных соединений и аминокислотных последовательностей белков методами жидкостной хроматографии и масс-спектрометрии высокого разрешения

Развитие методов исследование молекулярного строения объектов природного (нефть, гумус) и космического происхождения (метеориты, лунный грунт)

Нетрадиционные и возобновляемые источники энергии и системы хранения энергии

Разработка принципов управления процессом окисления металлов водой с целью создания безопасных экологически чистых источников водорода

Изучение процессов самоорганизации материи, протекающих при релаксации из квазиравновесного состояния

Квантово-химические и кинетические исследования динамики и механизмов высокотемпературных процессов преобразования биомассы и других сложных веществ органического происхождения для нужд энергетики и порошковой металлургии

10

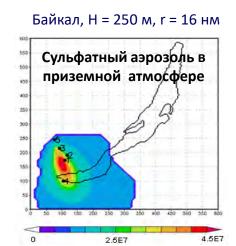
Лаборатория нано- и микроструктурного материаловедения

• Синтез и исследование наноразмерных порошков металлов и их соединений.

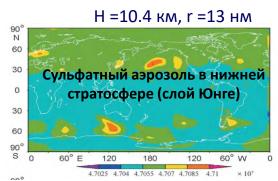
Автоматизированная установка для синтеза ультрадисперсных порошков металлов, сплавов, соединений металлов, а также многослойных core-shell структур на основе разработанного М.Я. Special inlet unit Геном и А.В. Миллером в 1960-х годах левитационно-струйного метода.

Масс-спектрометрический анализ газовой среды и изучения процессов сорбции, термической десорбции и химических реакций с участием наночастиц металлов и соединений металлов

• Поиск и развитие перспективных направлений использования наноразмерных порошков металлов и их соединений


- активные среды для биотехнологии и сельского хозяйства
- водородная энергетика
- высокоэнергоемкие наноматериалы
- катализаторы
- Химическая физика высокоэнергетических атмосферных явлений

Установка создания в лабораторных условиях линейных электрических разрядов высокой энергии в атмосфере


Лаборатория гетерогенных химических реакций в атмосфере

• Нано и микрочастицы в атмосфере: формирование частиц и химические реакции с их участием

Анализ влияния атмосферных аэрозолей на радиационный баланс планеты и выяснение механизма формирования кислотных дождей

Создание математических моделей для описания переноса в атмосфере газовых и аэрозольных микропримесей с учетом микрофизики образования частиц и фотохимической трансформации газовых и аэрозольных микропримесей

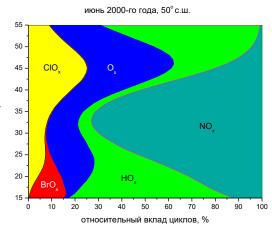
Выявление антропогенных и биогенных источников образования аэрозольных частиц

• Молекулярное моделирование и расчеты динамики физикохимических процессов

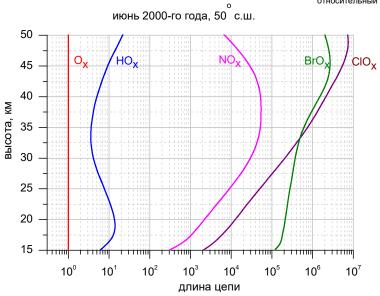
Происхождение жизни

Горение и пиролиз биомассы

Снижение выбросов СО и NO


Горение Al

Лаборатория химической физики атмосферы


• Развитие теории озонового слоя Земли

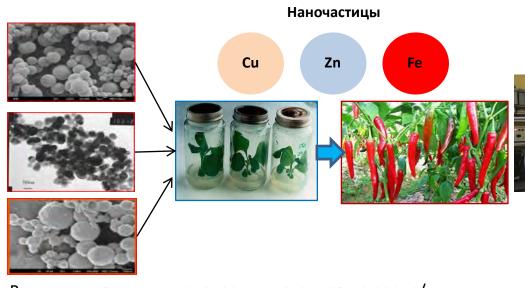
Расчеты скорости гибели озона в известных каталитических циклах, включая кислородный (O_x) , водородный (HO_x) , азотно-окисный (NO_x) , хлорный (ClO_x) и бромный (BrO_x)

Относительный вклад циклов в разрушение стратосферного озона на широте 50° северной 💈 широты

Larin Igor - Dr. Sci., Professor of the Moscow P technical Institute (State University), Head of th Laboratory of the Tal'roze Institute of Energy Problems of Chemical Physics of the Russian Aca


Chemical Physics of the Ozone Layer

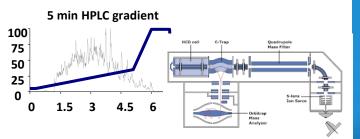
LAMBERT

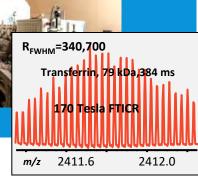

Лаборатория биологического воздействия наноструктур

• Фундаментальные и прикладные исследования по применению наночастиц металлов в биокультивировании высших растений

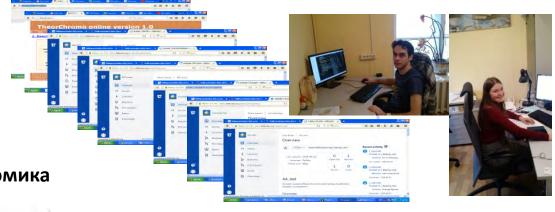
Анализ структурно-функциональных перестроек и интенсивности фотосинтеза в клетках тканей растений.

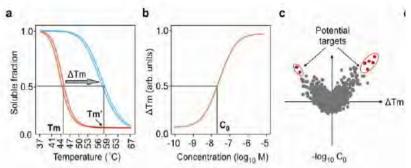
Разработка методов мультиомиксного (протеомного, метаболомного, транскриптомного) анализа для выяснения молекулярных механизмов реакции растений на действие наночастиц металлов.


Выяснение влияния наночастиц металлов на рост с/х растений и поражения заболеваниями


Лаборатория физико-химических методов исследования структуры веществ

• Физико-химические методы анализа клеточных протеоформ

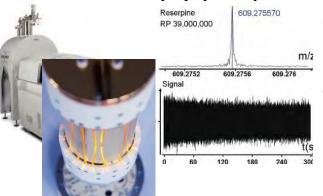



Высокоскоростная хроматография и масс-спектрометрия ультравысокого разрешения в задачах анализа клеточных протеомов и протеоформ

• Вычислительные методы и информационные технологии мультиомиксного анализа

Алгоритмы высопроизводительного поиска идентификаций белков при работе с «большими данными» мультиомиксного анализа и Интернет-доступные программно-аналитические ресурсы на их основе

• Химическая и количественная протеомика


Методы анализа взаимодействий химических соединений с клеточными протеомами, интерактомное картирование клеток и поиск ключевых каскадов внутриклеточных процессов

Количественное профилирование протеомов

Лаборатория ионной и молекулярной физики

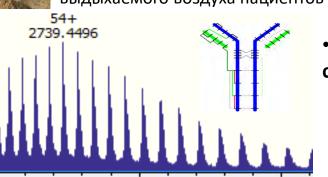
• Развитие техники масс-спектрометрии ИЦР ультравысокого разрешения, включая анализ природных резервуаров органического углерода методами сверхточной масс-спектрометрии

2500

2000

Создание теоретических основ, моделирование и конструирование ионных ловушек для масс-анализаторов сверхвысокого разрешения

Классификация биотоплив, нефтей и гумуса методами сверхточной масс-спектрометрии


• Протеомика, метаболомика и липидомика физиологических жидкостей, в том числе протеомика экстремальных состояний

Количественное профилирование протеомов физиологических жидкостей человека в экстремальных состояниях

анализ

Протеомный и метаболомный выдыхаемого воздуха пациентов

3000

• Секвенирование белков методами массспектрометрии сверхвысокого разрешения

конденсата

ХАГ

Разработка хроматомасс-спектрометрических подходов для исследования структурных особенностей моноклональных антител в задачах персонализированной иммунотерапии

Лаборатория химической физики энергоаккумулирующих гетерогенных систем

• Исследование релаксации квазиравновесного состояния вещества и протекающих при этом процессов самоорганизации материи

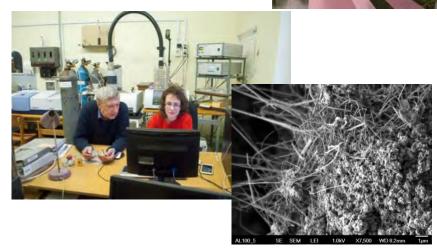
Разрабо

Исследование релаксации инконгруэнтных расплавов Al_2O_3 , образующихся в результате воздействия излучения мощного импульсного CO_2 -лазера на поверхность кристаллического сапфира

СБОРНИК ТЕЗИСОВ ДОКЛАДОВ ABSTRACTS

XIX ХАРИТОНОВСКИЕ ЧТЕНИ

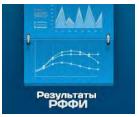
Разработка методов исследования быстропротекающих процессов в газовых средах на базе оригинальной вакуумной лазерной установки


• Проблемы повышения эффективности получения энергии в процессах

окисления металлов

Экспериментальное изучение низкотемпературного окисления алюминия, способы активации процесса

Компьютерное моделирование процесса горения ансамбля наночастиц алюминия в парах воды



ИНЭПХФ РАН им. В.Л. Тальрозе сегодня

Гранты Российских фондов


Российский научный фонд

Формирующиеся молодежные коллективы

Публикации в высокорейтинговых международных

