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Non-complementary strand commutation 
as a fundamental alternative for information 
processing by DNA and gene regulation

Maxim P. Nikitin    1,2 

The discovery of the DNA double helix has revolutionized our understanding 
of data processing in living systems, with the complementarity of the two 
DNA strands providing a reliable mechanism for the storage of hereditary 
information. Here I reveal the ‘strand commutation’ phenomenon—a 
fundamentally different mechanism of information storage and processing 
by DNA/RNA based on the reversible low-affinity interactions of essentially 
non-complementary nucleic acids. I demonstrate this mechanism by 
constructing a memory circuit, a 5-min square-root circuit for 4-bit 
inputs comprising only nine processing ssDNAs, simulating a 572-input 
AND gate (surpassing the bitness of current electronic computers), and 
elementary algebra systems with continuously changing variables. Most 
importantly, I show potential pathways of gene regulation with strands of 
maximum non-complementarity to the gene sequence that may be key to 
the reduction of off-target therapeutic effects. This Article uncovers the 
information-processing power of the low-affinity interactions that may 
underlie major processes in an organism—from short-term memory to 
cancer, ageing and evolution.

The structure of DNA1, discovered in 1953, implied that every strand of 
DNA is meant to have the ‘perfect’ companion—the complementary 
strand. This unique feature instantaneously suggested nature’s design 
of data storage within DNA. Indeed, it is straightforward to encode and 
then decipher the information that is laid out as linear sequences of 
A/T/G/C-monomers on two intertwined strands of DNA, where A on 
one strand binds with T on the other strand, and similarly G comple-
ments C. The selectivity of interactions between the respective mono-
mers leads to a remarkably high mutual specificity of the two strands, 
while multi-point binding ensures extraordinary affinity and tight 
association, even at single-molecule concentrations. Non-covalent 
(but essentially non-reversible) binding of the two precise copies of the 
encoded information guarantees efficient long-term storage, readout 
and duplication of the data in both living and synthetic systems2.

Although this perception of DNA has formed the fundamental 
basis for biology research, many riddles about DNA—such as the 
purpose of the noncoding parts of the genome—remain unsolved. 

Although we are constantly discovering new epigenetics mechanisms 
that affect genetic data readout (such as on/off switching of transcrip-
tion and translation), the question arises of whether any other data 
are held by DNA in a non-traditional form—that is, unreadable within 
the current paradigm of the double helix, complementarity and the 
genetic code? If yes, then what would be the underlying mechanisms?

Because no such form has been identified in vivo over the past 65 
years, perhaps, first, it needs to be recreated artificially in vitro. The 
young field of biocomputing3 is devoted to synthetic systems that 
can mathematically process data using biomolecules (for example, 
for advanced theranostics and drug delivery4,5). With relatively few 
extracellular systems based on small molecules6,7 and/or proteins8,9, 
numerous DNA-based approaches10–13 have been proposed, following 
the pioneering work of Adleman14.

Despite the variety of published DNA-based systems, all of them 
rely on the fundamental ability of DNA to form a double-stranded 
complex of two complementary strands (for example, for strand 
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are available (Discussion), here the information will be encoded into 
concentration levels of the complexes that are formed within an oligo-
nucleotide set. For simplicity, the system’s state (the result of computa-
tion) will be assessed by looking at the complexes formed by a single 
‘signal’ oligo S. To report the state of its complexes, the signal oligo will 
be labelled by a fluorophore, and its counterparts (oligos Qn, n = 1, 2, …) 
will be labelled with a quencher. The detectable level of fluorescence 
will indicate the result of the computation: ‘logic truth (1)’ in the case 
of unquenched fluorescence of the free S and ‘logic false (0)’ in the case 
of quenched fluorescence of the formed complexes. Addition of input 
oligos (Im, m = 1, 2, …) will initiate the computation, with the presence 
of the input oligo considered ‘logic truth (1)’ and absence indicates 
‘logic false (0)’. The threshold between true and false signals will be the 
average between the minimum and maximum output signals observed 
among all input combinations.

Let us start with the most basic single-input YES gate, the output 
value of which equals the input value. Such a gate can be built with only 
three oligos, as shown in Fig. 2a: input I, signal S and one intermediary 
strand—quencher Q. If Q has certain weak affinities towards both S and 
I, but the affinity between I and S is much weaker (ideally negligible), 
then the system will function as follows. When no I is present, some of 
S is bound with Q, and fluorescence is quenched to a certain low level. 
Once I is added to the system, the balance of the Q complexes will shift; 
I will bind some of the Q, effectively pulling Q out of the complex with 
S (partially), thereby unquenching the fluorescence. Hence, when I 
is present (input = 1), the detectible signal increases (output = 1). To 
achieve a higher dynamic range of the true/false signals, we can adjust 
the affinity and concentrations (A&C) in such a way that Q prefers to 
bind with I over S (dissociation constants Kd[IQ] < Kd[QS] and/or con-
centrations [I] > [Q] > [S]). In the following, such tuning of the system 
will be referred to as ‘A&C adjustment’.

For the experimental implementation (let us begin with RNA), 
three ssRNAs were designed (the sequences for all used gates 
are shown in Supplementary Note 1, as well as concentration and 
mutual affinity data) with the following NUPACK-predicted affini-
ties: Kd[QS] = 4 × 10−9 M, Kd[IQ] = 2 × 10−9 M and Kd[IS] = 2 × 10−2 M  
(hereafter, Kd is the approximate dissociation constant; details are 
provided in Supplementary Note 1). S was synthesized with the Cy5 label 
on its 5′ end, and Q with the BHQ2 quencher on its 3′ end. Note that the 
fluorophore and quencher are known to slightly change the affinity of 
the labelled strands. Also, having non-complementary bases near the 
quencher–fluorophore pair may lower the efficiency of fluorescence 
quenching (thereby causing discrepancies between prediction and 
experiment). However, this influence was neglected during design 
of the systems and the calculations of Kd. Figure 2a shows the correct 
YES-gate performance of the system using these three oligos with 
[S] = 1 µM, [Q] = 1 µM and [I] = 10 µM. Supplementary Fig. 1 shows that 
correct gating can also be observed with different A&C adjustment 
with equal concentrations [S] = [Q] = [I] = 1 µM.

The inverted NOT gate (the output is opposite to the input) can be 
realized with strand commutation between four oligos: S, Q, mediator 
M and I (Fig. 2b). I should interact only with M; M with I and Q; Q with I 
and S; and S only with Q. Furthermore, the A&C adjustment should be 
such that M prefers to bind with I over Q, and Q favours binding with 
M over S. Accordingly, when no input is present, M pulls most of the Q 
from its bond with S, and the free S fluoresces intensely. Addition of I 
leads to it binding with M. This frees up Q, which now binds with S and 
quenches the signal. Hence, when the input is 1, the output is 0. Figure 
2b shows the performance of the experimental implementation of the 
RNA-based NOT gate.

A similar idea can be used to construct more complex gates. For 
diversity, in the following examples, ssDNA ensembles will be used. A 
three-input OR gate and a three-input AND gate using 12-nt and 15-nt 
ssDNA, respectively, are shown in Fig. 2c,d (Supplementary Figs. 2 and 
3 show the gate kinetics). In the OR gate, all three inputs (I1, I2, I3) act on 

displacement15 or to ensure the specificity of DNAzymes16,17) and hence 
lie within the traditional double-helix paradigm.

In this Article I demonstrate a ‘strand commutation’ mechanism 
for data processing with DNA that lies outside that paradigm, that is, 
a mechanism based on essential non-complementarity between the 
interacting DNA strands.

Results
I noted one remarkable feature of DNA, the beauty of which has been 
long overshadowed by the elegance of the double helix. Let us look at 
a DNA strand X. Generally, its complementary strand, X̄, will have the 
highest affinity among all other strands. However, if we generate vari-
ations of X̄ by sequential substitution of nucleotides for random ones, 
then we will get a set of oligonucleotides with a variety of irregular 
complementarity patterns (Fig. 1a) and a full range of affinities for 
X—from extremely affine (like the original X̄) to the absolutely non- 
binding ones. Here I will refer to such strands as ‘undercomplementary’ 
to make a distinction from other patterns of partial complementarity 
with different biological meaning, such as those with alternating 
domains of complete complementarity and non-complementarity  
as used in strand displacement, single-nucleotide polymorphisms  
and so on.

To provide an understanding of the obtained ‘affinity continuum’, 
we can use state-of-the-art algorithms that relatively accurately predict 
the affinity between single-stranded DNA molecules (ssDNA) based 
on their sequence. Throughout this manuscript, NUPACK18,19 is used 
for this.

For example, we can compute the affinity for a short 10-base ran-
dom ssDNA X = GCAGTATTCG with all 410 (~106) possible 10-nt DNA 
sequences. Figure 1a shows that, even for such short strands, the com-
puted dissociation constants are packed so tightly that an undercom-
plementary sequence can be chosen that has affinity within 10% of any 
given dissociation constant (excluding ~25 min/max values). Figure 1b 
shows that a similar effect can be observed if we look at the affinity of 
all 10-base strands simultaneously towards two oligos: X and the com-
plementary X̄, or X and another random Y (for example, TAGCGCAGTA, 
which has little affinity to X). Aside from affinity extrema, a close-packed 
multidimensional affinity continuum is formed such that an under-
complementary oligo can be selected with on-demand affinities 
towards multiple preselected oligos.

Now let us look at what happens in a random mix of short ssDNA 
molecules when we deliberately remove all complementary strands 
and leave only weakly interacting undercomplementary ones.  
Figure 1 illustrates the differences between such a system (Fig. 1d) 
and those based on the traditional complementarity idea (Fig. 1c). In 
the absence of their ‘perfect’ companions, each ssDNA will reversibly 
associate with other strands, constantly interchanging partners. Such 
complexes will coexist simultaneously, governed by the law of mass 
action. Mathematically speaking, in equilibrium, the system will com-
ply with a set of nonlinear equations, as shown in Fig. 1d.

This strand commutation process (together with the affinity con-
tinuum feature of nucleic acids) offers a fundamental alternative to the 
double helix for the storage and processing of data within DNA/RNA.

Basics of the phenomenon and illustration with Boolean logic
Although strand commutation provides a great variety of ways to 
process different sorts of data, its power will be first demonstrated 
here for the construction of systems that implement Boolean logic. 
I begin with this illustration to simplify the explanation as well as to 
allow comparison with other state-of-the-art biocomputing systems, 
most of which operate in terms of logic gates.

Before specific logic gates and circuits are described, general 
rules need to be postulated for consistency and for the correct assess-
ment of the computational results. As noted, each system represents 
a set of weakly interacting oligonucleotides. Although other options 
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the same Q. In the AND gate, each input acts on its own Qn (n = 1, 2, 3), 
and all Qn simultaneously act on S. In the OR gate, A&C adjustment 
should allow each In to take up most of the Q on its own; that is, each 
In–Q complex should be much more favourable than Q–S. In this case, 
once any of the inputs is present, then all Q becomes bound to In, and S is 
unquenched. In the AND gate, A&C adjustment should allow each Qn (in 
the absence of the respective input) to quench most of the S on its own.

By combining such YES/NOT/AND/OR gates we can program the 
systems for more complex behaviour. For example, Fig. 2e shows the 
construction and performance of a NAND gate as the OR[NOT[Input]] 
combination (which is equivalent to the NOT[AND[Input]] combina-
tion). Before demonstrating the more complex logic circuits, let us 
look at the parameters that influence strand commutation at the level 
of the basic YES/OR gates. The parameters, discussed in more detail in 
the following, are strand concentration, strand size, kinetics, balance 

between low affinity and specificity, dynamic range and NUPACK pre-
diction accuracy.

First, the key issue is whether the phenomenon can be observed at 
the cell-level concentrations of small DNA/RNA molecules (for exam-
ple, microRNA, miRNA), which are generally much lower than 1 µM, 
but can be as high as tens and even hundreds of nanomoles/litre20,21. 
As dictated by the law of mass action, there is no concentration limit to 
the effect. OR gates with 15-base and 20-base ssDNA could be experi-
mentally constructed at all tested concentrations down to 1 nM (where 
fluorescently labelled oligonucleotides can still be detected by stand-
ard plate readers; Fig. 3a and Supplementary Figs. 4 and 5). Therefore, 
concentration-wise, it is feasible that strand commutation plays an 
important role in living systems.

Second, what is the minimal size of the compatible strands?  
Figure 3b and Supplementary Fig. 6 show the relatively smooth 
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Fig. 1 | Signal transduction—conventional complementarity paradigm versus 
non-complementary strand commutation. a,b, Affinity continuum for ssDNA 
molecules: number of 10-nt ssDNAs for a given Kd with an arbitrary ssDNA X (per 
0.2 orders of Kd) (a) and two-dimensional distribution for the number of 10-nt 
ssDNAs for a given Kd towards arbitrary X and Y (b, top) or towards X and X̄ 
(ssDNA complementary to X; b, bottom) per 0.1×0.1 orders of Kd. c, Examples of 
signal transduction between interacting oligonucleotide within the conventional 

complementarity paradigm: overlapping regions of various strands have 
identical sequences. d, The idea behind signal transduction through strand 
commutation, that is, low-affinity interactions of essentially non-complementary 
strands: a single strand can simultaneously interact with a multitude of 
undercomplementary strands with different non-matching sequences, thereby 
passing the information to multiple recipients.
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distribution of NUPACK-predicted strand affinities depending on 
ssDNA length. In experiments, OR-gating with up to 7-nt ssDNA could be 
achieved (at 1–10 µM concentrations; Fig. 3c). Within the current para-
digm of specific double-helix interactions, 7-base strands (especially 
non-complementary to the target sequence) are generally regarded as 
useless ‘debris’ after hydrolysis of larger DNA. However, these results 
suggest that even such small nucleic acids may contribute to informa-
tion homeostasis in a cell.

Although NUPACK predictions describe only the behaviour of 
the systems at equilibrium, it is interesting to assess the kinetics of 
these reactions. As expected22, the correlation of the gate kinetics 
with strand properties was not straightforward. However, for inputs of 
various affinities, the YES-gate response was on the order of seconds to 
minutes, as shown in Fig. 3d (Supplementary Figs. 2–4, 7 and 8 present 
kinetics for different gates).

Next, it should be noted that the term ‘low affinity’ is not absolute, 
but is linked to the concentration levels of the participating mol-
ecules. The demonstrated signal transduction between the molecules 
occurs when the complexes of the molecules coexist together with 
their free states, which happens when the concentrations are close to 
the dissociation constant (up to approximately three to four orders 
higher). Although a given nucleic-acid strand can reversibly interact 
with many strands simultaneously in this low-affinity regime, the 
specificity towards other strands is far from being lost: the affinity 

continuum is too vast. Supplementary Fig. 8 shows that inputs from 
the YES gate of Fig. 3d maintain high specificity: they do not activate 
another YES gate formed by a different pair of S and Q strands in the 
same experimental conditions.

It should also be pointed out that the dynamic range of the gate 
(the signal range between false and true output) is greatly affected by 
the A&C adjustments; for the YES gate it depends on the relationship 
of (1) the QS and IQ affinities and (2) the concentrations of I, Q and S.

Figure 3e shows the MATLAB solution of the law-of-mass-action 
equations (which would be true for any type of molecule, not only 
nucleic acids) and demonstrates the range of changes in the state of the 
free S (output) relative to total S concentration (1) for different Kd[QS], 
Kd[IQ] with fixed concentrations of all oligos (Fig. 3e(left) for the case 
of [S] = [Q] = [I] = 1 µM) and (2) for the case of variable concentrations 
with fixed IQ and QS affinities (Fig. 3e(right) for Kd[IQ] = Kd[QS] = 1 µM, 
[S] = 1 µM). In the experiment, a tenfold input-induced increase in the 
signal could be achieved, as shown in Fig. 3d,f.

The design of the strand commutation systems requires high pre-
diction accuracy for the strand interactions. Accordingly, the ability of 
NUPACK to predict interactions within the YES gate was assessed. For 
the fixed S and Q strands, a variety of inputs I21–I34 were designed with 
similar affinity to Q but with different undercomplementarity patterns. 
However, in the experiment, although all inputs were able to demon-
strate activation of the YES gate, the extent of S unquenching was very 
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Boolean input is encoded by omitting (=0) or adding (=1) the input oligo to the 
test tube containing premixed data-processing oligos. The output of each gate 
is measured as the fluorescence of the labelled signal oligo S, which is affected 
by reversible association with a quencher-bearing oligo, Q. The latter is pulled 
out of the interaction with S depending on the presence/availability of a series of 
similarly interacting undercomplementary mediator and input oligos (as shown 

in the gate schemes). c–e, Multiple-input gates implemented with ssDNA: three-
input AND (c), three-input OR (d) and three-input NAND (e). Nucleotides that are 
complementary to the corresponding sequence (shown with arrows) are written 
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different (Fig. 3f). Although NUPACK greatly facilitated this study, the 
design of sophisticated circuits nevertheless required tedious experi-
mental testing/selection of the oligos. For example, by evaluating the 
performance of these 14 inputs, I was able to select only six of those 
with the highest degree of unquenching that showed similar enough 
behaviour to construct a correctly functioning six-input OR gate  
(Fig. 3g). Evidently, NUPACK has been designed primarily to handle fully 
complementary strands. Substantially better accuracy can perhaps 
be achieved by creating a similar algorithm that is trained by using 
undercomplementary strands or by building an adjustment add-on 
for NUPACK (see the example by Bee et al.23).

Biocomputing circuits
Now, let us look at how strand commutation deals with more complex 
data processing. The first example is an artificial 3-bit ‘short-term’ 

memory circuit with write-and-read function. The system is fed with 
a set of three inputs that it needs to ‘remember’. Next, to read out the 
stored information at an arbitrary time point, the fourth readout input 
is introduced into the system, and a fluorescent signal at three differ-
ent wavelengths (each corresponding to a specific input) reports the 
values of the initial inputs.

Figure 4 shows the general scheme of the system, which has three 
signal oligos: S1 is labelled with BDP-FL, S2 with Cy3, and S3 with Cy5. 
These fluorophores can be easily distinguished from each other accord-
ing to their fluorescence spectra. Each signal oligo has a corresponding 
quencher oligo (Q1, Q2, Q3) to process inputs I1, I2, I3 to be ‘remembered’, 
respectively. However, there is also one common quencher, QR, that 
can bind with each of the signal oligos and processes the readout input  
R. In other words, these are three different AND gates (with independent 
outputs) that share one common readout input.

b
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Fig. 3 | Performance aspects of the basic YES/OR logic gates. a, Two-input OR 
gates with nanomolar 15-nt (blue) or 20-nt (orange) ssDNA ([S] = 1 nM; [Q] = 1 nM; 
[I1] = [I2] = 10 nM) (n = 3). b, Density of affinity continuum for the different 
lengths of ssDNA. The graph plots the NUPACK simulation of interactions of 
the randomly generated ssDNA pairs: simulated data are shown within the 
black dashed lines and extrapolated outside the region, as explained in detail 
in Supplementary Fig. 6. Red and green dashed lines demonstrate affinities of 
poly-G/poly-C or poly-A/poly-T duplexes, respectively. c, Two-input OR gate with 
7-nt ssDNA (n = 3). d, YES-gate kinetics for inputs of various affinities towards 
Q (n = 3). e, Theoretical dynamic range of the YES-gate output, that is, free S 
concentration with input minus free S concentration without input relative  

to the total S concentration: for the case of [S] = [Q] = [I] = 1 µM for various 
Kd[IQ], Kd[QS] or for the case of Kd[IQ] = Kd[QS] = 10−6 M ([S] = 1 µM) for various 
concentrations. f, Correlation of the NUPACK prediction with experiment: 
kinetics of various inputs with similar affinity to Q but with different 
undercomplementarity patterns. g, Six-input OR gate (n = 3). In a and c, the  
true/false threshold is the average of the maximum and minimum outputs.  
The outputs of each gate are normalized by the respective threshold signal.  
In a, c, d and f, nucleotides that are complementary to the corresponding 
sequence (shown with arrows) are written in black, and non-complementary  
ones are in red. Data are presented in relative fluorescence units (r.f.u.) as 
mean ± s.d, and the n values indicate the number of independent samples.
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Until the readout input is added to the system, all outputs are 0. 
When the readout is initiated (R = 1), output of each gate will be equal 
to the value of the remembered input (I1, I2 or I3). Figure 4 shows the 
experimentally measured signals for the as-designed system as well 
as the confocal scan of the microplate (for visual demonstration of 
the readout).

The next example demonstrates the strand commutation effi-
ciency by direct comparison with other biomolecular computing 
approaches. So far, one of the toughest benchmark tests in the realm 
of biocomputing has been calculation of the square root of 4-bit 
numbers. In 2010, Qian and Winfree tackled the problem using a DNA 
strand-displacement circuit that featured a complex signal restoration 
mechanism15. The circuit required 130 oligos and 10 h for computation. 
In 2019, Song et al.24 presented a circuit based on the strand-displacing 
DNA polymerase; this lacked signal restoration but could solve the 
problem using 37 oligos in 25 min.

Here it is demonstrated that, with strand commutation, the same 
task can be realized with only nine short 15-nt oligonucleotides (+4 
inputs) and less than 5 min of computation time. Figure 5 shows the 
scheme of the implemented logic functions and the design of the 
systems based on the combination of the described above YES/NOT/
AND/OR gates. Computations by the high and low registers of the 
output (O1 and O2, respectively) proceed simultaneously in a single test 
tube, with output readout at different wavelengths (two correspond-
ing signal oligos S1 and S2 are labelled with Cy5 and Cy3, respectively). 
The O1 circuit is an OR gate (Fig. 5b), but the O2 circuit is much more 
complex (Fig. 5c).

It was possible to generate many sets of oligos that implement cor-
rect performance of the O2 circuit in simulation. However, as suggested 
by Fig. 3f, with increased complexity, NUPACK simulation of the strand 
interactions substantially deviated from the experimental behaviour. 
Therefore, the in silico designed oligo set needed extensive manual 
tuning, both in terms of sequences and concentrations. First, parasite 
cross-reactivity (that is, non-predicted) needed to be minimized. Sec-
ond, the concentrations of the oligos had to be regulated so that for all 
strands at the same distance from the signal (see scheme in Fig. 5c), the 
variation between minimum and maximum signals (corresponding to 
the present or absent strand) became the same.

With such adjustments, the working circuit for calculating the square 
root was constructed (the sequences and concentrations are shown in 
Supplementary Note 1). Figure 5d,e shows the performance of the circuit 
for all possible 4-bit numbers 5 min post input addition (Supplementary 
Fig. 10 shows the temporal stability of the gate’s output signal).

Simulation of the highly complex information-processing 
systems
Next the potential scope of strand commutation will be demonstrated 
by means of in silico simulations of advanced biocomputing systems 
that are far superior to those shown before. These examples also pro-
vide an insight into the vast amounts of information potentially hidden 
within the low-affinity biomolecular interactions of living organisms. 
Regretfully, such complex systems cannot yet be tested experimentally 
until next-generation algorithms are developed that predict affinities 
between molecules with dramatically higher precision.
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Fig. 4 | Memory circuit and its design and performance. a, Experimental 
set-up, schematics and sequences of ssDNA used in the memory circuit, as an 
example of direct storage of information via strand commutation. The memory 
cell is first written with a 3-bit number encoded by three input oligos that are 
omitted (=0) or added (=1) to the test tube. Upon addition of the input, the 
circuit’s output remains off (0). However, once the readout initiator oligo R is 
added to the test tube, the circuit changes its state in the three fluorescence 
channels (BDP-FL, Cy3, Cy5) so that the 3-bit output shows the stored input 
value. Nucleotides that are complementary to the corresponding sequence 

(shown with arrows) are written in black, and non-complementary ones in red. 
b, Experimental performance of the circuit. Computation results are measured 
using a plate fluorometer, 5 min after addition of the inputs (n = 3 independent 
samples). The true/false threshold is the average of the maximum and minimum 
outputs. The outputs of each gate are normalized by the respective threshold 
signal. Data are presented in relative fluorescence units (r.f.u.) as mean ± s.d. 
The confocal scan of the samples was taken 1 h after addition of the inputs, 
and is representative of n = 3 independent experiments (additional images are 
presented in Supplementary Fig. 9).
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I should explicitly note that the following simulations have two 
distinct levels that have separate limitations for translation to experi-
ment. The first is the NUPACK sequence-based prediction of strand 
affinities, which needs further improvement to account for all com-
plexities of DNA interactions25. The second is the analysis of reversible 
reactions within the set of weakly interacting molecules according 
to the well-established fundamental law of mass action. Therefore, 
in principle, if a set of molecules is identified with the same affinity 
constants as in the examples below, they should show the predicted 
behaviour in experiments.

Let us imagine that we have a gene with a certain 20-base 
sub-sequence that can be affected by associating with a same-sized 
single-stranded oligo, for example, via the RNAse-H-mediated anti-
sense mechanism (that is, cleavage of messenger RNA (mRNA) upon 
its hybridization with ssDNA26). Within the standard complementarity 
paradigm, this 20-base-long part offers a maximum of 420 ≈ 1012 pos-
sibilities that can affect it; that is, there are 1012 ssDNAs that can either 
bind or not bind the target sequence. Strand commutation offers at 

least 2572 ≈ 10172 possibilities for affecting such a gene in the same set-up. 
That is substantially more than the number of all elementary particles 
in the visible universe by any published estimate.

I demonstrate this feature by in silico simulation of a 500-input 
AND gate and show that up to 572-input gates can be achieved in 
this simulation. Interestingly, so far, such input bitness has not yet 
been accomplished, even in the most powerful electronic comput-
ers. To construct such an AND gate, which was designed similarly to 
the three-input AND gate shown in Fig. 2c, the following algorithm 
was developed. First, the sequence of the signal oligo S was fixed, 
then I–Q pairs were sequentially selected that (1) had a predefined 
range of IQ and QS affinities and (2) were checked to have ‘parasite’ 
affinity with all previously selected oligos below a certain limit. 
The optimized thresholds that could generate more than 1,000 
I–Q pairs had the following approximate (for a definition see Sup-
plementary Note 1) dissociation constants: 5 × 10−7 M < Kd[QS] < 
9 × 10−7 M; 4.1 × 10−10 M < Kd[IQ] < 2.6 × 10−9 M; parasite crosstalk 
threshold Kd > 1.8 × 10−5 M.
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Fig. 5 | Square-root circuit and its design and performance. a, Experimental 
set-up of the circuit. b, Design of the circuit for computing high bit output O1. 
c, Design of the circuit for computing low bit output O2. In b and c, nucleotides 
that are complementary to the corresponding sequence (shown with arrows) 
are written in black, and non-complementary ones in red. Exclamation marks 
flag different orientations of the I2 input. d, Computation results were measured 
using a plate fluorometer, 5 min after addition of the inputs. The true/false 

threshold is the average of the maximum and minimum outputs. The outputs of 
each gate are normalized by the respective threshold signal. Data are presented 
in relative fluorescence units (r.f.u.) as mean ± s.d (n = 4 independent samples). 
e, Confocal scan of the samples 1 h after addition of the inputs (the image is 
scaled along the x axis for easier comparison with d), representative of n = 4 
independent experiments (additional images in the genuine aspect ratio are 
provided in Supplementary Fig. 11).

http://www.nature.com/naturechemistry


Nature Chemistry

Article https://doi.org/10.1038/s41557-022-01111-y

The set was optimized by removing ‘bad’ I–Q pairs (those that 
yielded worse-than-average outputs) by sequential testing of AND 
gates with an increasing number of inputs (100, 200, 300 and 500). 
Such escalation was performed to reduce the computation time: a 
100-input gate requires ~3 min·CPUcore processing, a 200-input gate 
10 min·CPUcore, and a 500-input gates 216 days·CPUcore. Finally, 500 
pairs were identified for correct performance of the 500-input AND 
gate shown in Fig. 6a (Supplementary Table 1 lists the sequences and 
concentrations of the oligos).

It should be noted that, because even 100-input gates have an enor-
mous number of different input combinations (2100≈1030), to confirm 
correct logic gating of an N-input AND gate, only the following N + 2 
input combinations were tested: (1) all inputs = 0, that is, S + {all Qx}; (2) 
all inputs = 1, that is, S + {all Qx} + {all Ix}; (3) all except one input = 1, that 
is, S + {all Qx} + {I1, …, Ix − 1, Ix + 1; IN}, for 1 ≤ x ≤ N. Indeed, if all single-false 
input combinations have output less than the threshold (determined 
by ‘all 0’ or ‘all 1’ input conditions), the gate should operate correctly 
for all other input combinations, as they exhibit even less output.

Interestingly, Fig. 6c shows that, although the output for the 
all-true input condition gradually decreases with increasing number of 
inputs in the constructed gates, the maximum value for the single-false 
input condition stays almost the same for all gates (compare the per-
formance of the 500-input and 100-input AND gates in Fig. 6a,b). If we 

extrapolate these data, we can see that the all-true input values pass 
above the threshold (twice the maximum output for the single-false 
input) up to the 572-input AND gate, which is thus also possible.

Although Boolean algebra perfectly serves the needs of digital 
electronic computing, it is unlikely to do the same for many natural 
processes within living systems. On the contrary, living systems mostly 
rely on analogue information-processing, because the concentra-
tions of participating molecules usually change non-discretely, that 
is, continuously.

Accordingly, the remarkable abilities of strand commutation will 
now be demonstrated for complex modulation of analogue signals 
by simulating ssDNA ensembles that solve algebraic equations for 
continuously changing variables, for example, y = Ax2 for any −2 < x < 2. 
To this end, an evolutionary algorithm is developed here that finds the 
set of ssDNAs that generates the best fit to the algebraic equations. 
The system was designed as follows. Similarly to the systems above, 
one strand was fixed as the input I (CCGTTACGGATGCACAACAC) and 
another one as the output signal S (CCATATCCGACTCACACAAC). The 
total concentration of S was fixed at 10−10 M. The concentration of free 
S would indicate the output y coordinate value as y = ([Sfree] − [yoffset])/
[coeff], where [yoffset] = 5 × 10−11 M and [coeff] = 10−11 M are the arbitrary 
offset and normalization coefficients, respectively. As the x-coordinate 
value, the logarithm of the normalized concentration of I was used, that 
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Fig. 6 | High bitness systems—500-input and 572-input AND gates.  
a, Schematics and simulated performance of the 500-input AND gate. The ‘all 
inputs = 1’ and ‘all inputs = 0’ values that determine the threshold (the average 
of maximum and minimum output signals) are shown, together with 500 input 
combinations corresponding to cases with all inputs = 1 except the Xth input = 0. 
All other (2500–502) ≈ 3 × 10150 combinations must produce a smaller output than 
these 500 input combinations. The outputs of each gate are normalized by the 
respective threshold signal. The ssDNA sequences and their concentrations are 
listed in Supplementary Table 1. The complementarity of mediator Q nucleotides 
to S as well as the similarity of inputs I with S are shown schematically below the 

graph: green squares represent matching bases and red squares non-matching 
bases. All oligos are 20-nt long. b, Simulated performance of the 100-input AND 
gate. Note a higher value for ‘all inputs = 1’ than for the 500-input AND gate.  
c, Values for the AND gate outputs depending on the number of the gate’s inputs: 
black squares, ‘all inputs = 0’; green diamonds, ‘all inputs = 1’; violet circles and 
blue triangles, the minimum and maximum output values among ‘all inputs = 1 
except one’ combinations, respectively. Data extrapolation shows that the 
maximum output values among ‘all inputs = 1 except one’ combinations are still 
below threshold for the 572-input AND gate.
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is, x = log([I]/[xoffset]), where [xoffset] = 10−6 M is an arbitrary offset concen-
tration. The ranges of x, y are standardized so that 10−8 M < [I] < 10−4 M 
and 4 × 10−11 M < [S] < 6 × 10−11 M, so −2 ≤ x ≤ 2 and −1 ≤ y ≤ 1.

The designed algorithm was first given an initial set of 
signal-processing ssDNAs. At each evolutionary epoch, the algorithm 
sequentially generated mutations within the sequences and altered the 
concentrations of the strands. For each set, a loss function value was 
calculated (using the mean-square method). At the end of the epoch, 
the set that yielded the closest fit to the correct solution to the problem 
was selected as the base for the next epoch. The algorithm stopped 
once a solution with a maximum error of 1% at each tested x value was 
found. If no solution could be found after a certain period, the number 
of oligos in the set was increased.

Figure 7 shows the identified sets of oligos, which induce changes 
in free S concentration (output) as a response to variation of input I 
concentration according to the predefined functions normalized to 
fit the x, y region defined by y = 0.5x, y = (−0.25)x2, y = (0.125)x3, y = √x/2 
and y = sin(xπ/2). Evidently, these sets can solve mathematical equa-
tions of elementary algebra. For example, Supplementary Fig. 12 dem-
onstrates the solution of the equation (−0.25)x2 = sin(xπ/2).

Gene regulation and the natural importance of strand 
commutation
Finally, as a glimpse into the importance of strand commutation as a 
natural phenomenon, I experimentally demonstrate a disruptive idea: 
an arbitrary unstructured ssDNA can specifically regulate expression 
of a given gene, irrespective of the mutual complementarity or simi-
larity between their sequences. By specific regulation, I do not mean 
that gene expression becomes susceptible to any input regardless of 

its sequence, but that the expression can be made dependent on the 
specific sequence of the given arbitrary ssDNA while staying unrecep-
tive to other sequences.

Although such an idea lies outside the current paradigm (as it has 
become established over the decades to search for gene-regulating 
oligos based on their complementarity to the target gene), it becomes 
evident from the above-described logic circuits.

To prove the point, let us again consider how strand commuta-
tion influences one of the most explored natural mechanisms of gene 
expression regulation, namely, RNAse-H-mediated degradation of 
mRNA upon its binding with the antisense ssDNA, which results in 
translation arrest (scheme in Fig. 8a)26. Accordingly, as the output 
oligo S we will now use a physiologically meaningful nucleic acid, spe-
cifically, mRNA.

Because we are dealing with low-affinity interactions, for an unob-
structed proof we need a reaction system that has absolute minimum 
components that can interfere with the circuitry, even with the lowest 
affinities. Accordingly, the following experimental set-up is used. 
First, the model gene mRNA (Firefly Luciferase, Supplementary Fig. 
13) is subjected to ssDNA inputs in the presence of the purified RNase 
H, and the results are passed to a rabbit reticulocyte extract cell-free 
translation system for gene expression. Successful translation with 
luminescent product is considered output = 1, and translation arrest 
with diminished luminescence is considered output = 0.

It is next shown that an arbitrary unstructured ssDNA, even of 
the maximum possible non-complementarity to the gene’s sequence, 
can be made into a specific input that regulates the gene expression 
output result of such a circuit. To generate short oligos of the ultimate 
non-complementarity to mRNA, two evaluation parameters were used: 

_ __

Maximum error = 0.96% Maximum error = 0.82% Maximum error = 0.88% Maximum error = 0.88% Maximum error = 0.93%

y = y = y = sin

System operation

Black-box composition

5' 3' 5' 3'
[Sfree] ~ y = f(x) = f(log10(I))

10–8 M < [I] < 10–4 M
Input concentration: continously changing variable Black-box oligo set

M
M

M
M

MM M

M

Sequence Concentration (M) Sequence Concentration (M) Sequence Concentration (M) Sequence Concentration (M) Sequence Concentration (M)

6 × 10–11 6 × 10–11 6 × 10–11 6 × 10–11 6 × 10–11

5 × 10–11

4 × 10–11

5 × 10–11

4 × 10–11

5 × 10–11

4 × 10–11

5 × 10–11

4 × 10–11

5 × 10–11

4 × 10–11

10–8 10–6 10–8 10–6 10–4 10–8 10–6 10–4 10–8 10–6 10–4 10–8 10–6 10–410–4

2
x y = –

4
x2

8
x3

y = _
2
x (     )2

_x π

′ ′

Fig. 7 | Analogue systems solving elementary algebra problems. Simulation 
of the non-Boolean black-box systems for solving various problems with 
continuously changing variables. Sequences of the processing ssDNA of each 
system are shown, together with their respective concentrations. The NUPACK-
simulated performance of each system is shown as red dots and the theoretical 

solution of the equation is shown as a blue line. The x values of the red dots were 
used within the evolutionary algorithm to minimize the system’s output error 
with respect to the theoretical value. The optimization was stopped once the 
maximum error (displayed below each graph) at each point dropped below 1%.
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(1) the maximum number of the oligo’s bases complementary to mRNA 
within any linear sub-sequence of mRNA (not considering potential 
bulges); (2) the longest consecutive sub-sequence of the oligo comple-
mentary to mRNA. Among 100,000 randomly generated 15-nt-long ssD-
NAs, the minimum observed value for the first parameter was 8 and for 

the second was 5. Accordingly, as the model inputs, two unstructured 
oligos R1 and R2 were chosen with both parameters simultaneously at 
these minima (the sequences are shown in Fig. 8 and Supplementary 
Note 1, and a detailed analysis of complementarity in Supplementary 
Fig. 14). Although it is possible that even less complementary ssDNA 
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Fig. 8 | Gene regulation circuits, and the strand commutation mechanism 
versus the conventional antisense concept. a, Schematics for the antisense 
mechanism dependent on RNase H. Design of the random 15-nt sequences R1, 
R2 of maximum possible non-complementarity to Firefly Luciferase mRNA, 
mediators M1, M2 and R1b input variant. Nucleotides that are complementary 
to mRNA are written in black, and non-complementary ones are each shown 
as a red x (a full analysis of complementarity and similarity is provided in 
Supplementary Figs. 14 and 15). b, Strand commutation mechanism behind the 
regulation of gene expression with ssDNA of maximum non-complementarity 
to the target mRNA, and schematics of YES(M2), NOT(R1), NOT(R1b) and NOR 
(R1, R1b) gates. Nucleotides that are complementary to the corresponding 
sequence (shown with arrows) are written in black, and non-complementary 
ones in red. M2 bases that do not match the mRNA sequence are highlighted in 
cyan. c,d, Effect of addition of the designed ssDNA to the translation reaction: 
inputs are first incubated at 1 µM with biosystems containing RNAse H with 
mRNA only (c) or mRNA + M1/mRNA + M1 + M2 (d), then mixed with the cell-
free expression system. Investigation of the produced effect is carried out 

with plate-reader-measured luminescence of the generated Luciferase upon 
addition of the substrate, plotted in mass units based on the recombinant 
protein calibration curve. Data are presented as mean ± s.d. (a,b, NOR gate, n = 4 
independent samples; b, YES gate, n = 6 independent samples). Bioimaging 
photos visualize the normalized luminescence of the generated Luciferase 
(maximum observed signal within each biosystem is normalized to ~90% of the 
scale range; n = 3 independent samples; study performed independently from 
the plate-reader study with increased reaction volumes; Supplementary Fig. 16 
provides photographs of all samples). Electrophoresis data show cleaved mRNA 
fragments of the expected size (Supplementary Fig. 13 shows the cleavage site) 
for samples without addition of cell-free expression system components and 
increased concentrations of mRNA and RNAse H for better detection (inputs 
were kept at 1 µM; Supplementary Fig. 17 and the source data file provide the full 
photographs; representative of n = 3 independent experiments). In all cases, 
‘No input’ represents the addition of the same volume of buffer; ticks denote 
observed differences in protein expression/mRNA cleavage as compared to the 
‘No input’ condition. R.l.u., relative luminescence units.
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could be found by screening all 15-nt oligos, it would hardly affect the 
conclusions. As shown in Fig. 8a, addition of either R1 or R2 at a con-
centration of 1 µM does not inhibit mRNA translation. Accordingly, 
they do not exhibit the ‘conventional’ antisense effect and are indeed 
non-complementary to mRNA.

However, a specific logic gate NOT(R1) can be constructed such 
that addition of R1 (but not R2) leads to translation inhibition. As in 
the NOT gates described above, we need to add two mediator oligos, 
M1 and M2, between R1 and S (as the target S sub-sequence we use an 
mRNA sub-sequence around the AUG codon).

In this example, for added value, we refrain from changing the 
concentrations of the oligos during A&C adjustment of the circuit and 
operate only by varying the affinities. The concentrations of all input 
oligos are fixed at 1 µM, which is at the level of the half-maximum inhibi-
tory concentration (IC50) of the common antisense ssDNA.

After designing and screening various M1/M2 candidates, the 
functional sequences shown in Fig. 8 were found. Additionally, to dem-
onstrate that R1 is not unique or unusual, an R1b input of similar affinity 
to M2 was designed with close to minimum possible complementarity 
to mRNA (Fig. 8a and Supplementary Fig. 14).

Of all the mentioned ssDNA, only M1 has sufficient, but not full, 
complementarity to mRNA to induce mRNA cleavage by RNAse H  
(Fig. 8a, bottom half, lower) and inhibit protein expression (Fig. 8a, 
bottom half, higher). R1, R1b and R2 are inert.

However, due to strand commutation, the presence of M1 and 
M2 in the mRNA mix makes the R1 and R1b efficient inhibitors of the 
observed translation, as shown in Fig. 8b. Moreover, such inhibition 
is specific (the ‘non-specific’ R2 still has no effect) and pronounced, 
with 2.1- and 1.8-fold reductions in protein production for R1 and R1b, 
respectively. Their combined action, each at 1 µM, within the NOR(R1, 
R1b) gate results in 2.3-fold inhibition. Figure 8 also explicitly confirms 
that R1 and R1b (but not R2) induce additional mRNA cleavage by RNAse 
H through strand commutation with M1 and M2.

Accordingly, for any observer who does not take into account the 
presence of M1 and M2 (which are also non-complementary to mRNA), 
R1 and R1b will have an ‘enigmatic’ off-target translation inhibition 
action. It should also be noted that the used oligos have no noticeable 
similarity to the mRNA sequence such as to expect a ‘conventional’ 
influence on gene expression as sense oligonucleotides27 (a detailed 
analysis of similarity to the mRNA sequence is presented in Supple-
mentary Fig. 15).

This Article shows that the overall ssDNA/ssRNA repertoire in the 
microenvironment may be no less important for gene regulation with 
oligonucleotides than their complementarity to the gene sequence. 
Due to the high abundance of various nucleic acids in cells, the strand 
commutation phenomenon may have an immense effect on maintain-
ing the homeostasis of gene expression. At the same time, this study 
has been performed in an extremely simplified biosystem containing 
only a small set of nucleic acids. It is premature to judge whether strand 
commutation significantly affects gene expression in vivo. However, 
if it does, it may be a useful as a source of drug candidates and for 
understanding brain activity, evolution and other complex processes 
of living systems.

Discussion
There are several aspects for discussion regarding the strand commuta-
tion phenomenon: (1) its advantages and drawbacks as a biocomputing 
approach, (2) its immediate importance for biomedical research and 
applications and (3) a general overview of its potential involvement 
in natural processes.

Biocomputing
Although two mathematical regimes of computing (Boolean logic and 
elementary algebra) are demonstrated here, it is entirely possible that 
larger volumes of data can be processed more quickly if a different 

mathematics is used. The affinity continuum allows the generation of an 
ssDNA set with virtually any predetermined affinity matrix. This unique 
feature can offer experimental implementations of many mathematical 
ideas proposed within reaction network theory28,29.

As compared to other biocomputing methods that allow complex 
computing, the advantage of the strand commutation concept is the 
virtual absence of restrictions regarding molecules that are compat-
ible with the method. No limitations are imposed on the relationships 
of the input, output and mediating entities; that is, they can be of the 
same or different sizes (unlike in the DNAzyme concept), they can be 
very short (unlike in the strand-displacement concept), and they can 
all be of a non-DNA nature.

I believe that strand commutation can achieve high computation 
speeds, first because signal propagation along the circuit is deter-
mined by the lifetime (koff) of each complex in the system, which can 
be designed to be short due to (1) low affinity between the strands in 
general and (2) an unlimited flexibility in the choice of strand sequences 
and their undercomplementarity patterns. Second, with strand com-
mutation, systems can operate without concerns about unwanted 
crosstalk between participating oligos at high concentrations, which 
means faster speeds in general (Supplementary Figs. 3 and 4 and  
ref. 30). Indeed, because of the low-affinity regime, oligos in strand 
commutation systems can barely bind even their intended partners, 
let alone non-desired strands. In contrast, the strand-displacement 
approach usually deals with much longer strands that form high-affinity 
complexes. Their high concentrations may result in spurious reactions 
that would destabilize signal transduction and limit circuit complexity. 
At the same time, the kinetics of toehold-mediated strand exchange is 
complex and adjustable24,30,31, so it is possible that computation speeds 
may increase in the future.

In the demonstrated systems, data are encoded within the con-
centrations of the molecular complexes. However, other system 
parameters can also be used for this purpose. For example, stor-
age of information as the rates of concentration changes would 
allow even higher speeds of data processing. However, prediction 
of molecular behaviour at equilibrium remains far from ideal. The 
design of dynamic systems thus has to wait for advances in molecular 
modelling methods32.

Regarding the limitations of the approach, in most of the above 
systems the input and output oligos were not simultaneously selected 
arbitrarily; the oligos were designed to roughly fit the predefined 
matrix of mutual affinities between all oligos within the system. This is 
not as convenient as the strand-displacement approach. Nevertheless, 
I believe that, with sufficient strand length and proper A&C considera-
tions, arbitrary oligos can be employed as inputs and outputs. Indeed, 
in the gene-expression control study, the input by design had minimal 
nucleotides complementary to the gene sequence. Moreover, the issue 
can be easily addressed by adding more commutating oligos between 
input and output, though at the cost of higher prediction complexity.

At this point, the presented systems have no built-in error cor-
rection mechanisms (as has been realized in the strand-displacement 
approach15). On the one hand, they are unnecessary at this point, as 
accurate and faster computation could be achieved without them. On 
the other hand, their incorporation could make systems more robust.

As concerns the scalability of this approach, it is unclear what 
complexity of computation can be achieved in a single homogeneous 
sample until more accurate interaction prediction algorithms are 
developed. With an increase in ssDNA lengths, the affinity continuum 
expands so rapidly that unwanted crosstalk seems to be easily avoid-
able. At fixed oligo lengths, a substantial increase in the number of 
participating oligos would generally require decreasing their concen-
trations and raising their affinities to sustain the reversible binding 
regime. This may decrease computation speeds.

At the same time, a true path to scaling up lies in compartmen-
talization, as nature does with multicellular organisms. Complexity 
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would substantially increase if one could achieve physical separation 
of the ‘computation units’ on a circuit board, either with semiperme-
able membranes or by implementing strand commutation on the 
solid phase (via immobilization of some oligos). Such a solution would 
completely eliminate the unwanted crosstalk problem. However, sig-
nal transduction between such units remains the grand challenge for 
all biocomputing approaches. Furthermore, compartmentalization 
concepts will be faced by long-term stability issues—they may require 
most of the natural cell machinery to maintain molecular consistency.

Immediate importance
The straightforward implications of these findings are primarily related 
to applications of relatively small RNA and DNA (sRNA/sDNA), includ-
ing the long noncoding RNA. Although little is still known about the 
whole spectrum of sRNA activity, they have been shown to regulate 
transcription, chromosome replication, RNA processing and transla-
tion, mediate communication between cells through exosome trans-
port, and so on33.

The results of this Article change the perspective for analysis of 
such nucleic acids. Previously, the pool of gene-regulating strands has 
been established primarily based on complementarity to the target. 
The present study suggests that, due to strand commutation, multiple 
tiers of consecutively interacting nucleic acids (including those abso-
lutely non-complementary to the target) need to be analysed to under-
stand the full extent of the regulation processes. Such analysis may 
offer new insights into complex phenomena that involve nucleic-acid 
turnover, such as cancer34, ageing35 and even memory36. It would be 
particularly interesting to understand whether the long noncoding 
RNAs participate in gene regulation via strand commutation.

Understanding the sRNA/sDNA repertoire and their interactions 
may allow better prediction and minimization of off-target effects37 of 
gene therapies, including gene editing and antisense and siRNA treat-
ments of various diseases38. Furthermore, reduction of the unexpected 
long-term side effects of next-generation vaccines based on nucleic 
acids may be especially important in the post-COVID era.

The reported phenomenon can also be employed to design gene 
therapy with fine multifactor tuning based on cellular cues. In particu-
lar, strand commutation allows the incorporation of additional levels 
of control over gene therapy to increase the specificity of therapeutic 
circuitry. For example, a gene transfection agent could be delivered sys-
temically together with a combination of sRNA that allows the expres-
sion of the gene only in a predefined profile of the cell-produced sRNA.

Outlook of a general natural phenomenon
Since its emergence about a century ago, molecular biology has rede-
fined our understanding of living systems. Numerous research efforts 
have been devoted to reveal the vast pathways of molecular interac-
tions within organisms. The high specificity of the discovered interac-
tions forms the fundamental reliability basis of life. The concept of a 
step-by-step information transfer along strictly defined molecular 
pathways seems perfect to ensure the predictability and sustainability 
of living processes.

The present work exposes a different but complementary idea—
reliable data transition through a continuum of reversible low-affinity/
low-specificity molecular interactions. As shown above, the discov-
ered molecular commutation phenomenon features a relatively high 
degree of reliability of data processing and storage, with a remarkable 
flexibility of tuning.

Importantly, the commutation phenomenon is based entirely 
on the fundamental law of mass action and is not restricted to nucleic 
acids. Although I believe that this phenomenon will be of primary 
importance for the DNA/RNA realm (due to the unique straightforward 
sequence–affinity relationship), in principle it may manifest itself with 
any other molecule type (proteins, small molecules, carbohydrates, 
lipids and so on). It may thus be useful to look for commutation in the 

realm of proteins and other molecules participating in ‘promiscuous’ 
interactions39, that is, when a receptor can bind to many diverse ligands. 
For example, in the case of olfactory receptors, an enormous variety of 
smell sensations can be generated by profiling binding affinities of each 
ligand with a few receptor types, and the promiscuity of bone morpho-
genetic protein enables wider cellular addressing, as shown in ref. 40.

At the same time, although the present work uncovers the value 
of the promiscuous interactions of undercomplementary nucleic 
acids, the demonstrated data-processing power stems not from the 
mere ability of the ssDNA to bind to many other undercomplementary 
strands, but from the reversibility of the low-affinity interactions, that 
is, from the continuous exchange and rebalancing of the molecules 
between their complexes, which results in signal transduction (hence, 
the term ‘commutation’). This is conceptually different from olfactory 
receptors, which use the low affinity of molecular binding primarily for 
a constant system reset to sense new odours.

In general, if molecular commutation significantly manifests itself 
in vivo, it may be involved in two ways: (1) to uphold homeostasis due to 
the immense number of weakly contributing molecules and (2) quite 
the opposite, to generate randomness for evolution, which may also 
result in complex failures within the organism. In particular, a single 
mutation or concentration change of a far-tier effector can disturb mul-
tiple important pathways via a butterfly effect. For example, consider 
the memory circuit above: the readout of three different inputs can be 
disturbed by a concentration change or mutation of a single QR strand.

As noted above, I believe it would be hard to directly observe and 
prove manifestation of the molecular commutation phenomenon 
in vivo. In contrast to high-affinity molecular pathway systems, any 
measurement within a low-affinity system will have a nonlinear impact 
on multiple states (or pathways) of the interactions. Consider, for 
example, how measurement (hence altering concentration) of the I2 
input in the square-root circuit would affect complexes of the X12, X23, 
X24 and S2 output. Observing the phenomenon and reconstructing the 
causal relationships in such complex and ‘concentrated’ systems such 
as living organisms will be a challenging task. It will require substantial 
advancements in biosensing techniques, molecular modelling and big 
data analysis.

Conclusion
Further investigation of strand commutation (and molecular com-
mutation in general) could open new perspectives in fundamental 
science and biomedicine. Even if no natural processes are meant to uti-
lize the mechanism, there is zero chance that it cannot spontaneously 
manifest itself. Representing the dark matter of molecular biology, 
low-affinity interactions are much more abundant and unpredictable 
than high-affinity ones. In any case, the existence of the demonstrated 
phenomenon substantially complicates the study of molecular interac-
tions within living systems. Perhaps the low-affinity ‘affinome’ (as part 
of the interactome) can give us the key to those complex matters that we 
struggle to understand within the current paradigm of high-specificity 
and high-affinity interactions.
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Methods
Materials
All oligonucleotides were purchased from Lumiprobe (Russia). 
Fluorophore- and quencher-labelled oligonucleotides, as well as ssRNA, 
were purified by polyacrylamide gel electrophoresis (PAGE). All other 
oligonucleotides were desalted (C18 cartridge). A list of the used oligo-
nucleotides and their properties is provided in Supplementary Note 1.

Other materials were obtained from the following suppliers. Pro-
mega: rabbit reticulocyte lysate, nuclease-treated (cat. no. L4960); 
Luciferase control RNA (cat. no. L4561), ONE-Glo EX Luciferase assay 
system (cat. no. E8110), QuantiLum recombinant Luciferase (cat. no. 
E1701). New England BioLabs: RNase H (cat. no. M0297S). Thermo 
Fisher: SYBR Gold nucleic-acid gel stain (cat. no. S11494), RNA gel load-
ing dye (cat. no. R0641). Sigma: tris(hydroxymethyl)aminomethane 
(cat. no. Sigma 7–9), ethylenediaminetetraacetic acid disodium salt 
dihydrate, Tween 20. SPL Life Sciences: 384-well plates (cat. no. 33384). 
All other chemical reagents were of analytical grade and were used 
without further purification.

Logic gates and circuits
All gates (except gene regulation ones) were performed in 0.1 M Tris 
buffer, pH 7.0, with 1 M NaCl and 0.01% Tween 20 (TBST buffer) at 
room temperature (~22–25 °C). Generally, investigation of logic-gate 
performance was performed by mixing 50 µl of 2× concentrations of 
all oligonucleotides that resemble the logic-gate system with 50 µl of 
2× concentrations of the inputs. Supplementary Note 1 lists the con-
centrations of the oligonucleotides in the final solution for each gate.

Fluorescence measurements
Fluorescence was measured using a Clariostar plate reader 
(BMG Labtech) with the following excitation/emission settings: 
530 ± 20/580 ± 30 nm and 610 ± 30/675 ± 50 nm for single Cy3 or 
Cy5, respectively. The same were used for samples with both Cy3 and 
Cy5. For the samples with three fluorophores, the following settings 
were used to minimize crosstalk: BDP-FL, 440 ± 20/510 ± 20 nm; Cy3, 
560 ± 10/595 ± 10 nm; Cy5, 610 ± 20/690 ± 50 nm. The gain was adjusted 
for each experiment to achieve maximum signal at 90% of the reader’s 
signal range.

Confocal microscopy
Confocal microscopy images were obtained with a Fluoview FV3000 
confocal laser scanning microscope (Olympus), a UPLSAPO ×4 objec-
tive, 561-nm and 640-nm lasers with 570–620-nm and 650–750-nm 
detection wavelengths, respectively, and a transmitted light detector 
at 640 nm. Multiple images were stitched during acquisition within 
the Fluoview software.

Cell-free translation study
Plate reader. For this study, 1.5 µl of input solution in RNase H reaction 
buffer (NEB; 50 mM Tris-HCl, 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 
pH 8.3 @ 25 °C) was mixed with 1 µl of Luciferase mRNA and RNase H 
solution in the same buffer to the following final concentrations: 1 µM 
inputs, 5.5 µg ml−1 Luciferase mRNA and 33 U ml−1 RNase H (note that 
deterioration of RNAse H activity during storage may decrease the ratio 
of true/false output signals). The mixing was performed in a cool room 
(~16–18 °C) to maintain the originally simulated values of the oligo 
mutual affinities. RNase H reaction buffer has a lower salt concentra-
tion than used during simulation (1 M Na+, 25 °C); see Supplementary 
Note 1 for the affinities under both conditions. The mix was incubated 
for 40 min and then combined with 5.5 µl of Promega nuclease-treated 
rabbit reticulocyte lysate translation mix (per 100 µl of rabbit reticu-
locyte lysate, 1.4 µl of amino acids minus leucine, 1.4 µl of amino acids 
minus methionine and 100 µl of Tween 20 0.01% were added). After 
1 h of incubation at 30 °C, 2.5 µl of each sample was transferred to a 
black 384-well plate and mixed with 20 µl of ONE-Glo EX Luciferase 

assay system substrate. Luminescence signals were then measured 
using a Clariostar plate reader (BMG Labtech) in whole spectrum with 
a gain of 3,000, converted to the corresponding protein concentration 
based on the recombinant Luciferase calibration curve (plotted as bar 
charts in Fig. 8).

Bioimaging. The same experiment as above was independently per-
formed using twice larger volumes of reagents, a 96-well plate and 
100 µl of the same substrate. The plate was imaged with the LumoTrace 
FLUO bioimaging system (Abisense) equipped with a Retiga Lumo 
camera (Photometrics) using Micromanager41 on Icy42 software with 
Abisense plugins. Bioluminescence was captured with a 3-min exposure 
and no emission filter, and bright-field with a 100-ms exposure.

Electrophoresis. A 3-µl volume of input solution in RNase H reaction 
buffer, as above, was mixed with 2 µl of Luciferase mRNA and RNase H 
solution in the same buffer to the following final concentrations: 1 µM 
inputs, 16 µg ml−1 Luciferase mRNA and 66 U ml−1 RNase H (higher con-
centrations of mRNA and RNAse H were used here to allow better detec-
tion of the cleavage results). The samples were incubated at 16–18 °C 
for 40 min, mixed with 7 µl of RNA gel loading dye (2×), incubated at 
80 °C for 1 min, and subjected to 12% denaturating PAGE with 8 M urea. 
The gels were stained with SYBR Gold according to the manufacturer’s 
protocol and imaged using a ChemiDoc MP system (Bio-Rad).

NUPACK simulations
The performance of the 500-input gate was assessed by running 
NUPACK scripts on Amazon Elastic Compute Cloud (EC2) multiple 
parallel t3.medium spot-instances. Design and performance testing 
of all other systems was run on a personal computer.

Statistical analysis
All studies were evaluated with n ≥ 3 independent samples at each data 
point to ensure reproducibility. Sample sizes are noted in the figure 
legends. No statistical methods were used to predetermine sample 
size. No specific blinding and randomization method was used. Data 
are presented as individual measurements as well as means ± s.d.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
The data that support the findings of this study are provided in the 
Article and its Supplementary Information, and are also available 
from the author on request. Source data are provided with this paper.

Code availability
The NUPACK (Ubuntu 14.04 BASH) and MATLAB scripts used to design 
the systems and analyse their performance are too numerous to be 
readily shared publicly, but can be made available from the correspond-
ing author on reasonable request.

References
41.	 Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. 

Computer control of microscopes using µManager. Curr. Protoc. 
Mol. Biol. 14, 14.20 (2010).

42.	 De Chaumont, F. et al. Icy: an open bioimage informatics  
platform for extended reproducible research. Nat. Methods 9, 
690–696 (2012).

Acknowledgements
I express deep gratitude to all developers of and contributors to 
the NUPACK algorithm, without which this study would be far less 
comprehensive. I thank I. L. Nikitina for assistance with manuscript 

http://www.nature.com/naturechemistry


Nature Chemistry

Article https://doi.org/10.1038/s41557-022-01111-y

preparation and the Cell Technologies Center core facility of the 
Institute of Cytology of the Russian Academy of Sciences for the 
confocal images in Figs. 4 and 5. 

Author contributions
M.P.N. conceived the idea, designed and performed the study,  
and wrote the manuscript.

Competing interests
M.P.N. has filed patent applications RU2019145384 (granted) and 
PCT/RU2020/050402 covering aspects of these findings. M.P.N. 
is the founder of the Abisense company, which manufacturers the 
LumoTrace bioimaging system.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41557-022-01111-y.

Correspondence and requests for materials should be addressed  
to Maxim P. Nikitin.

Peer review information Nature Chemistry thanks Anne Condon, 
Grigory Tikhomirov and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturechemistry
https://doi.org/10.1038/s41557-022-01111-y
http://www.nature.com/reprints




≥


	Non-complementary strand commutation as a fundamental alternative for information processing by DNA and gene regulation

	Results

	Basics of the phenomenon and illustration with Boolean logic

	Biocomputing circuits

	Simulation of the highly complex information-processing systems

	Gene regulation and the natural importance of strand commutation


	Discussion

	Biocomputing

	Immediate importance

	Outlook of a general natural phenomenon


	Conclusion

	Online content

	Fig. 1 Signal transduction—conventional complementarity paradigm versus non-complementary strand commutation.
	Fig. 2 Design and performance of the basic logic gates.
	Fig. 3 Performance aspects of the basic YES/OR logic gates.
	Fig. 4 Memory circuit and its design and performance.
	Fig. 5 Square-root circuit and its design and performance.
	Fig. 6 High bitness systems—500-input and 572-input AND gates.
	Fig. 7 Analogue systems solving elementary algebra problems.
	Fig. 8 Gene regulation circuits, and the strand commutation mechanism versus the conventional antisense concept.




