РАЗРАБОТКА КОМПОЗИЦИОННЫХ НАНОМАТЕРИАЛОВ С НЕОБХОДИМЫМ НАБОРОМ ФУНКЦИОНАЛЬНЫХ СВОЙСТВ

Юрков Г.Ю.

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н. Семенова Российской академии наук, Москва

Частное учреждение по обеспечению научного развития атомной отрасли «Наука и инновации». Госкорпорация «Росатом», Москва

Синтезированы композиционные материалы, содержащие металлсодержащие (оксиды, наночастицы простых составов карбиды, металлы), а также наночастицы сложных составов (сложные оксиды, ферриты, частицы со структурой ядро-оболочка). Синтез наночастиц в основном осуществлялся термораспадом металлсодержащих соединений в расплаве полимера в органическом масле и методом мокрой химии с последующим смешением с полимерами. Показано, что содержание наночастиц в матрице может быть доведено до 40 мас.%, при сохранении способности композиции к переработке в изделия стандартными методами.

Для установления состава и строения наночастиц используется комплекс физико-химических методов анализа. Проведены электрофизические и биоцидные исследования. На основе полученных результатов сделан вывод, что образующиеся наночастицы, как правило, имеют сложный состав и состоят из металлического ядра и оболочки из соединений с атомами О, С или F. Диаметр наночастиц, в зависимости от условий синтеза может направленно варьироваться от 4 до 50 нм.

Наиболее подробно были исследованы магнитные свойства композиционных материалов. Получены рекордные значения коэрцитивной силы и намагниченности для монометаллических частиц. Экспериментально доказано, что эти характеристики могут быть увеличены при легировании наночастиц другими металлами. Установление состава наночастиц и их поведения в условиях воздействия электромагнитного излучения позволило разработать прозрачные (прозрачность до 90 %) радиопоглощающие материалы (коэффициент экранирования от 65 Дб).

Из синтезированных композиционных материалов сформованы волокна. Изучена их структура и свойства. Композиционные волокна, с концентрацией наночастиц не более 0,25 мас.%, показали эффективное ингибирование жизнедеятельности патогенных микроорганизмов Esch. Coli, S. Aureus и микроскопического грибка C. Albicans.

Основными результатами проведенной работы следует считать: изучено влияние наночастиц и полимерных матриц на свойства композиций, что позволило решить задачи электромагнитосовместимости, в том числе при сохранении прозрачности покрытий; экспериментально продемонстрировано ингибирующее действие синтезированных материалов на жизнеспособность микроорганизмов.