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2-Pyridylselenyl halides undergo facile coupling with a triple CN

bond of unactivated nitriles. Unprecedented heterocyclization

allowed the preparation of a novel class of cationic 1,2,4-selena-

diazoles in remarkably high yields. Cationic 1,2,4-selenadiazoles

form supramolecular dimers in the crystal via Se⋯N chalcogen

bonding, which was studied theoretically.

Nitriles are important building blocks that are widely
employed both in the laboratory and industry.1 Electrophilic or
nucleophilic additions or asymmetric dipolar cycloaddition to
the triple bond of nitriles often serves as an indispensable tool
for the creation of various functionalities.1–4 However, the util-
ization of nitriles in organic synthesis is often hampered by
their inert nature, which even allows the application of some
of their congeners as media for the synthesis. Efficient electro-
philic (or nucleophilic) activation of nitriles can be achieved
upon their coordination to electron-poor, high-oxidation-state
(or electron-rich, low-valent) metal centers.1,5,6

Activation of nitriles by organometalloid compounds could
be beneficial due to the fact that the activator of the CN triple
bond is already present in the substrate, and the synthesis of
organometalloid derivatives, which involves reactions with

nitriles, potentially could be performed in a catalyst-free
fashion.

Organoselenium compounds are of considerable pharmaco-
logical importance.7,8 Therefore, the preparation of novel sel-
enium-containing building blocks is of substantial interest.
Recently, it has been demonstrated that 2-pyridylchalcogenyl
halides react with alkenes or alkynes resulting in the formation
of the corresponding five-membered heterocycles.9–12 Here we
show that 2-pyridylselenyl halides undergo facile coupling with
unactivated nitriles, which allows the preparation of novel cat-
ionic 1,2,4-selenadiazoles in remarkably high yields. Novel
heterocyclic compounds feature unusual attractive interactions
via four-center Se⋯N chalcogen bonding in the crystal.

When a solution of 2-pyridylselenyl chloride (1) in MeCN
was stirred at room temperature for 3 h, a colorless precipitate
of 3 was gradually formed. Isolation and analysis of the pre-
cipitate by NMR, mass spectrometry, and elemental analysis
suggested the formation of an adduct of 1 with MeCN in 96%
yield (Scheme 1).

A similar procedure was used to form bromide 4 starting
from 2-pyridylselenyl bromide (2) in 93% yield (Scheme 1).
Aromatic nitriles were also reactive towards 2-pyridylselenyl
halides. The addition of p-bromobenzonitrile to 2 in DCM
resulted in the formation of 5, which was isolated in 92% yield
(Scheme 1). Thus, the reaction proceeds smoothly for both ali-
phatic and aromatic nitriles.

Having established that 2-pyridylselenyl halides easily react
with nitriles, we were interested in whether their in situ gene-

Scheme 1 Synthesis of 3–5.
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ration and consequent addition to a CN triple bond were poss-
ible. Chlorination of diselenide 6 with sulfuryl chloride in
acetonitrile afforded the desired cyclization product 3 in 88%
yield (Scheme 2). Oxidation of 6 with Br2 was also successful.
However, bromide 4 was isolated in 84% yield (Scheme 2).
Thus, a simple and convenient in situ procedure could be
applied for the generation of cationic 1,2,4-selenadiazoles
from 2,2′-dipyridyldiselenides.

3–5 were recrystallized from methanol to give single crys-
tals, suitable for analysis by single crystal X-ray crystallography,
which confirmed the formation of adducts and revealed that
3–5 were unprecedented [1,2,4]-selenadiazolo-[4,5-a]-pyridi-
nium-4 halides (Fig. 1).

All bicyclic systems 3–5 are planar (Table S4†). Selenium
atoms adopt a T-shaped geometry (N–Se–C angles are 87.16(6)°
(3), 87.29(10)° (4) and 87.31(17)° (5)) with weakly binding
halide anions. The Se–N and Se–C bond distances (Table S4†)
are within the typical range for the corresponding single bond
values, while NvC bonds are unambiguously double
(Table S4†).

Interestingly, 3–5 all form supramolecular dimers via Se⋯N
chalcogen bonding in the crystal (2.986(1) Å (3), 2.941(2) Å (4)
and 3.008(4) Å (5), Fig. 2). Similar, but still rare, four-center
Te⋯N contacts were observed earlier for benzotellurodiazoly-
lium cations.13

In order to approximately quantify Se⋯N energies from a
theoretical point of view, we carried out DFT calculations at
the ωB97XD/6-31+G* level of theory and performed the topolo-
gical analysis of the electron density distribution within the
framework of Bader’s theory (QTAIM analysis)14 for model

associates (Cartesian atomic coordinates for these model
associates are shown in the ESI, Table S1†). The results of the
QTAIM analysis are presented in Table S2;† the contour line
diagrams of the Laplacian of the electron density distribution
∇2ρ(r), bond paths, and selected zero-flux surfaces, visualiza-
tion of the electron localization function (ELF) and reduced
density gradient (RDG) analyses for Se⋯N noncovalent inter-
actions in 3–5 are shown in Fig. 3, S1, and S2,† respectively.

The noncovalent interaction analysis as a scatter graph of
RDG vs. real space function sign (λ2)ρ, namely the product of
the sign of λ2 (second largest eigenvalue of the Hessian matrix
of the electron density) and ρ (electron density) (NCI plot15) for
model associates, and visualization of intermolecular contacts
in 3D using the NCI analysis technique are shown in Fig. S3.†

The QTAIM analysis demonstrated the presence of appro-
priate bond critical points (3, −1) for Se⋯N contacts in model
associates (Table S1†). The low magnitude of the electron
density (0.014–0.016 a.u.), positive values of the Laplacian of
the electron density (0.044–0.050 a.u.), very close to zero posi-
tive energy density in these bond critical points (3, −1), and
estimated strengths for appropriate short contacts
(2.5–3.1 kcal mol−1) are typical for chalcogen bonds in similar
chemical systems.16 The balance between the Lagrangian
kinetic energy G(r) and potential energy density V(r) at the
bond critical points (3, −1) corresponding to Se⋯N contacts in
model associates reveals that a covalent contribution is absent
in these chalcogen bonds.17 The Laplacian of the electron
density is typically decomposed into the sum of contributions
along the three principal axes of maximal variation, giving the
three eigenvalues of the Hessian matrix (λ1, λ2 and λ3), and the
sign of λ2 can be utilized to distinguish weak bonding (attrac-
tive, λ2 < 0) interactions from nonbonding ones (repulsive, λ2 >
0).15,18 Thus, Se⋯N noncovalent interactions in 3–5 are attrac-
tive (Table S2†).

In conclusion, we have discovered that 2-pyridylselenyl
halides easily undergo addition to the CN triple bond of
nitriles. An unprecedented process allowed the preparation of
novel cationic 1,2,4-selenadiazoles in remarkably high yields.
Moreover, we demonstrated that 2-pyridylselenyl halides could
be conveniently generated in situ by oxidation of 2,2′-dipyridyl-
diselenides and further reacted with nitriles to give the desired
products in high yields.

Scheme 2 Synthesis of 3 and 4 from 6. (i) SO2Cl2 and (ii) Br2.

Fig. 1 Ball-and-stick representations of the crystal structures of 3–5.
Grey and light-grey spheres represent carbon and hydrogen,
respectively.

Fig. 2 Ball-and-stick representation of the crystal structure of 3,
demonstrating attractive Se⋯N interactions. Grey and light-grey spheres
represent carbon and hydrogen, respectively.
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Novel cationic 1,2,4-selenadiazoles form supramolecular
dimers in the crystal via Se⋯N chalcogen bonding. Unusual
non-covalent interactions were studied theoretically, which
showed that the estimated strength of these weak contacts vary
from 2.5 to 3.1 kcal mol−1. Further studies on the novel
addition of 2-pyridylselenyl halides to nitriles as well as unpre-
cedented 1,2,4-selenadiazoles are underway and will be
reported in due course.
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